Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_1_a6, author = {M. A. Kovaleva and V. V. Smirnov and L. I. Manevich}, title = {Stationary and nonstationary dynamics of the system of two harmonically coupled pendulums}, journal = {Russian journal of nonlinear dynamics}, pages = {105--115}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a6/} }
TY - JOUR AU - M. A. Kovaleva AU - V. V. Smirnov AU - L. I. Manevich TI - Stationary and nonstationary dynamics of the system of two harmonically coupled pendulums JO - Russian journal of nonlinear dynamics PY - 2017 SP - 105 EP - 115 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_1_a6/ LA - ru ID - ND_2017_13_1_a6 ER -
%0 Journal Article %A M. A. Kovaleva %A V. V. Smirnov %A L. I. Manevich %T Stationary and nonstationary dynamics of the system of two harmonically coupled pendulums %J Russian journal of nonlinear dynamics %D 2017 %P 105-115 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_1_a6/ %G ru %F ND_2017_13_1_a6
M. A. Kovaleva; V. V. Smirnov; L. I. Manevich. Stationary and nonstationary dynamics of the system of two harmonically coupled pendulums. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a6/
[1] Takeno Sh., Homma Sh., “A sine-lattice (sine-form discrete sine-Gordon) equation: one- and two-kink solutions and physical models”, J. Phys. Soc. Japan, 55:1 (1986), 65–75 | DOI | MR
[2] Yomosa S., “Soliton excitations in deoxyribonucleic acid (DNA) double helices”, Phys. Rev. A (3), 27:4 (1983), 2120–2125 | DOI | MR
[3] Manevitch L. I., Smirnov V. V., “Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains”, Phys. Rev. E, 82:3 (2010), 036602, 9 pp. | DOI | MR
[4] Smirnov V. V., Manevich L. I., “Limiting phase trajectories and dynamic transitions in nonlinear periodic systems”, Acoust. Phys., 57:2 (2011), 271–276 | DOI
[5] Bogolubov N. N., Mitropolskiy Yu. A., Asymptotic methods in the theory of nonlinear oscillations, Nauka, Moscow, 1974 (Russian) | MR
[6] Malkin I. G., Theory of stability of motion, Univ. of Michigan, Ann Arbor, Mich., 1958, 456 pp. | MR
[7] Zaslavsky G. M., Sagdeev R. Z., Introduction to nonlinear physics: From the pendulum to turbulence and chaos, Nauka, Moscow, 1988 (Russian) | MR
[8] Hale J. K., Oscillations in nonlinear system, McGraw-Hill, New York, 1963, 192 pp. | MR
[9] Rabinovich M. I., Trubetskov D. I., Oscillations and waves in linear and nonlinear systems, Kluver, Dordrecht, 1989, 577 pp. | MR | Zbl
[10] Toda M., “Studies of a non-linear lattice”, Phys. Rep., 18C:1 (1975), 1–123 | DOI | MR
[11] Braun O. M., Kivshar Yu., The Frenkel – Kontorova model: Concepts, methods, and applications, Springer, Berlin, 2004, XVIII, 472 pp. | MR | Zbl
[12] Manevich L. I., Mikhlin Yu. V., Pilipchuk V. N., The method of normal oscillations for essentially nonlinear systems, Nauka, Moscow, 1989 (Russian) | MR
[13] Normal modes and localization in nonlinear systems, ed. A. F. Vakakis, Springer, Dordrecht, 2001, 293 pp.
[14] Barabanov I. N., Tkhai V. N., “Oscillation family in weakly coupled identical systems”, Autom. Remote Control, 77:4 (2016), 561–568 | DOI | MR | Zbl
[15] Tkhai V. N., “Oscillations in the autonomous model containing coupled subsystems”, Autom. Remote Control, 76:1 (2015), 64–71 | DOI | MR | Zbl
[16] Barabanov I. N., Tureshbaev A. T., Tkhai V. N., “Basic oscillation mode in the coupled-subsystems model”, Autom. Remote Control, 75:12 (2014), 2112–2123 | DOI | MR | Zbl
[17] Kuznetsov A. P., Sataev I. R., Turukina L. V., “Phase dynamics of periodically driven quasiperiodic self-vibrating oscillators”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:4 (2010), 17–32 (Russian) | Zbl
[18] Kuznetsov A. P., Sataev I. R., Turukina L. V., “Synchronization and multi-frequency oscillations in the chain of phase oscillators”, Nelin. Dinam., 6:4 (2010), 693–717 (Russian)
[19] Kuznetsov A. P., Kuznetsov S. P., Sedova Yu. V., “Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics”, Nelin. Dinam., 12:2 (2016), 223–234 (Russian) | Zbl
[20] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A universal concept in nonlinear sciences, Cambridge Univ. Press, New York, 2001, 432 pp. | MR | Zbl
[21] Markeev A. P., “A motion of connected pendulums”, Nelin. Dinam., 9:1 (2013), 27–38 (Russian) | MR
[22] Markeev A. P., “Nonlinear oscillations of sympathetic pendulums”, Nelin. Dinam., 6:3 (2010), 605–621 (Russian)
[23] Markeev A. P., “On the stability of nonlinear vibrations of coupled pendulums”, Mech. Solids, 48:4 (2013), 370–379 | DOI | MR
[24] Manevitch L. I., “New approach to beating phenomenon in coupled nonlinear oscillatory chains”, Arch. Appl. Mech., 77:5 (2007), 301–312 | DOI | Zbl
[25] Kovaleva A., Manevitch L. I., Manevitch E. L., “Intense energy transfer and superharmonic resonance in a system of two coupled oscillators”, Phys. Rev. E, 81:5 (2010), 056215, 12 pp. | DOI | MR
[26] Kovaleva A., Manevitch L. I., “Limiting phase trajectories and emergence of autoresonance in nonlinear oscillators”, Phys. Rev. E, 88:2 (2013), 024901, 10 pp. | DOI | MR
[27] Manevitch L. I., Smirnov V. V., “Resonant energy exchange in nonlinear oscillatory chains and limiting phase trajectories: From small to large systems”, Advanced nonlinear strategies for vibration mitigation and system identification, CISM International Centre for Mechanical Sciences, 518, ed. A. F. Vakakis, Springer, Berlin, 2010, 207–258, VII, 300 pp. | DOI | MR
[28] Manevitch L. I., Kovaleva A., Manevitch E. L., Shepelev D. S., “Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator: 1. A non-dissipative oscillator”, Commun. Nonlinear Sci. Numer. Simul., 16:2 (2011), 1089–1097 | DOI | MR
[29] Manevitch L. I., Kovaleva A., Manevitch E. L., Shepelev D. S., “Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator: 2. A dissipative oscillator”, Commun. Nonlinear Sci. Numer. Simul., 16:2 (2011), 1098–1105 | DOI | MR
[30] Manevitch L. I., Smirnov V. V., “Semi-inverse method in nonlinear dynamics”, Proc. of the 5th Internat. Conf. Nonlinear Dynamics (Kharkov, 2016), NTU KhPI, Kharkov, 2016, 28–37
[31] Manevitch L. I., Romeo F., “Non-stationary resonance dynamics of weakly coupled pendula”, Europhys. Lett., 112:3 (2015), 30005, 6 pp. | DOI
[32] Pilipchuk V. N., Nonlinear dynamics: Between linear and impact limits, Lect. Notes Appl. Comp. Mech., 52, Springer, Berlin, 2010, 300 pp. | DOI | MR | Zbl