Stationary and nonstationary dynamics of the system of two harmonically coupled pendulums
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 105-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analysis is presented of the nonlinear dynamics of harmonically coupled pendulums without restrictions to oscillation amplitudes. This is a basic model in many areas of mechanics and physics (paraffin crystals, DNA molecules etc.). Stationary solutions of equations of motion corresponding to nonlinear normal modes (NNMs) are obtained. The inversion of the NNM frequencies with increasing oscillation amplitude is found. An essentially nonstationary process of the resonant energy exchange is described in terms of limiting phase trajectories (LPTs), for which an effective analytic representation is obtained in slow time-scale. Explicit expressions of threshold values of dimensionless parameters are found which correspond to the instability of NNMs and to the transition (in parametric space) from the full energy exchange between the pendulums to the localization of energy. The analytic results obtained are verified by analysis of the Poincaré sections describing evolution of the initial system.
Keywords: essentially nonlinear systems, coupled pendulums, nonlinear normal modes, limiting phase trajectories.
@article{ND_2017_13_1_a6,
     author = {M. A. Kovaleva and V. V. Smirnov and L. I. Manevich},
     title = {Stationary and nonstationary dynamics of the system of two harmonically coupled pendulums},
     journal = {Russian journal of nonlinear dynamics},
     pages = {105--115},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a6/}
}
TY  - JOUR
AU  - M. A. Kovaleva
AU  - V. V. Smirnov
AU  - L. I. Manevich
TI  - Stationary and nonstationary dynamics of the system of two harmonically coupled pendulums
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 105
EP  - 115
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_1_a6/
LA  - ru
ID  - ND_2017_13_1_a6
ER  - 
%0 Journal Article
%A M. A. Kovaleva
%A V. V. Smirnov
%A L. I. Manevich
%T Stationary and nonstationary dynamics of the system of two harmonically coupled pendulums
%J Russian journal of nonlinear dynamics
%D 2017
%P 105-115
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_1_a6/
%G ru
%F ND_2017_13_1_a6
M. A. Kovaleva; V. V. Smirnov; L. I. Manevich. Stationary and nonstationary dynamics of the system of two harmonically coupled pendulums. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a6/

[1] Takeno Sh., Homma Sh., “A sine-lattice (sine-form discrete sine-Gordon) equation: one- and two-kink solutions and physical models”, J. Phys. Soc. Japan, 55:1 (1986), 65–75 | DOI | MR

[2] Yomosa S., “Soliton excitations in deoxyribonucleic acid (DNA) double helices”, Phys. Rev. A (3), 27:4 (1983), 2120–2125 | DOI | MR

[3] Manevitch L. I., Smirnov V. V., “Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains”, Phys. Rev. E, 82:3 (2010), 036602, 9 pp. | DOI | MR

[4] Smirnov V. V., Manevich L. I., “Limiting phase trajectories and dynamic transitions in nonlinear periodic systems”, Acoust. Phys., 57:2 (2011), 271–276 | DOI

[5] Bogolubov N. N., Mitropolskiy Yu. A., Asymptotic methods in the theory of nonlinear oscillations, Nauka, Moscow, 1974 (Russian) | MR

[6] Malkin I. G., Theory of stability of motion, Univ. of Michigan, Ann Arbor, Mich., 1958, 456 pp. | MR

[7] Zaslavsky G. M., Sagdeev R. Z., Introduction to nonlinear physics: From the pendulum to turbulence and chaos, Nauka, Moscow, 1988 (Russian) | MR

[8] Hale J. K., Oscillations in nonlinear system, McGraw-Hill, New York, 1963, 192 pp. | MR

[9] Rabinovich M. I., Trubetskov D. I., Oscillations and waves in linear and nonlinear systems, Kluver, Dordrecht, 1989, 577 pp. | MR | Zbl

[10] Toda M., “Studies of a non-linear lattice”, Phys. Rep., 18C:1 (1975), 1–123 | DOI | MR

[11] Braun O. M., Kivshar Yu., The Frenkel – Kontorova model: Concepts, methods, and applications, Springer, Berlin, 2004, XVIII, 472 pp. | MR | Zbl

[12] Manevich L. I., Mikhlin Yu. V., Pilipchuk V. N., The method of normal oscillations for essentially nonlinear systems, Nauka, Moscow, 1989 (Russian) | MR

[13] Normal modes and localization in nonlinear systems, ed. A. F. Vakakis, Springer, Dordrecht, 2001, 293 pp.

[14] Barabanov I. N., Tkhai V. N., “Oscillation family in weakly coupled identical systems”, Autom. Remote Control, 77:4 (2016), 561–568 | DOI | MR | Zbl

[15] Tkhai V. N., “Oscillations in the autonomous model containing coupled subsystems”, Autom. Remote Control, 76:1 (2015), 64–71 | DOI | MR | Zbl

[16] Barabanov I. N., Tureshbaev A. T., Tkhai V. N., “Basic oscillation mode in the coupled-subsystems model”, Autom. Remote Control, 75:12 (2014), 2112–2123 | DOI | MR | Zbl

[17] Kuznetsov A. P., Sataev I. R., Turukina L. V., “Phase dynamics of periodically driven quasiperiodic self-vibrating oscillators”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:4 (2010), 17–32 (Russian) | Zbl

[18] Kuznetsov A. P., Sataev I. R., Turukina L. V., “Synchronization and multi-frequency oscillations in the chain of phase oscillators”, Nelin. Dinam., 6:4 (2010), 693–717 (Russian)

[19] Kuznetsov A. P., Kuznetsov S. P., Sedova Yu. V., “Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics”, Nelin. Dinam., 12:2 (2016), 223–234 (Russian) | Zbl

[20] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A universal concept in nonlinear sciences, Cambridge Univ. Press, New York, 2001, 432 pp. | MR | Zbl

[21] Markeev A. P., “A motion of connected pendulums”, Nelin. Dinam., 9:1 (2013), 27–38 (Russian) | MR

[22] Markeev A. P., “Nonlinear oscillations of sympathetic pendulums”, Nelin. Dinam., 6:3 (2010), 605–621 (Russian)

[23] Markeev A. P., “On the stability of nonlinear vibrations of coupled pendulums”, Mech. Solids, 48:4 (2013), 370–379 | DOI | MR

[24] Manevitch L. I., “New approach to beating phenomenon in coupled nonlinear oscillatory chains”, Arch. Appl. Mech., 77:5 (2007), 301–312 | DOI | Zbl

[25] Kovaleva A., Manevitch L. I., Manevitch E. L., “Intense energy transfer and superharmonic resonance in a system of two coupled oscillators”, Phys. Rev. E, 81:5 (2010), 056215, 12 pp. | DOI | MR

[26] Kovaleva A., Manevitch L. I., “Limiting phase trajectories and emergence of autoresonance in nonlinear oscillators”, Phys. Rev. E, 88:2 (2013), 024901, 10 pp. | DOI | MR

[27] Manevitch L. I., Smirnov V. V., “Resonant energy exchange in nonlinear oscillatory chains and limiting phase trajectories: From small to large systems”, Advanced nonlinear strategies for vibration mitigation and system identification, CISM International Centre for Mechanical Sciences, 518, ed. A. F. Vakakis, Springer, Berlin, 2010, 207–258, VII, 300 pp. | DOI | MR

[28] Manevitch L. I., Kovaleva A., Manevitch E. L., Shepelev D. S., “Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator: 1. A non-dissipative oscillator”, Commun. Nonlinear Sci. Numer. Simul., 16:2 (2011), 1089–1097 | DOI | MR

[29] Manevitch L. I., Kovaleva A., Manevitch E. L., Shepelev D. S., “Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator: 2. A dissipative oscillator”, Commun. Nonlinear Sci. Numer. Simul., 16:2 (2011), 1098–1105 | DOI | MR

[30] Manevitch L. I., Smirnov V. V., “Semi-inverse method in nonlinear dynamics”, Proc. of the 5th Internat. Conf. Nonlinear Dynamics (Kharkov, 2016), NTU KhPI, Kharkov, 2016, 28–37

[31] Manevitch L. I., Romeo F., “Non-stationary resonance dynamics of weakly coupled pendula”, Europhys. Lett., 112:3 (2015), 30005, 6 pp. | DOI

[32] Pilipchuk V. N., Nonlinear dynamics: Between linear and impact limits, Lect. Notes Appl. Comp. Mech., 52, Springer, Berlin, 2010, 300 pp. | DOI | MR | Zbl