Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_1_a5, author = {M. V. Belichenko and O. V. Kholostova}, title = {On the stability of stationary rotations in the approximate problem of motion of {Lagrange{\textquoteright}s} top with a vibrating suspension point}, journal = {Russian journal of nonlinear dynamics}, pages = {81--104}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a5/} }
TY - JOUR AU - M. V. Belichenko AU - O. V. Kholostova TI - On the stability of stationary rotations in the approximate problem of motion of Lagrange’s top with a vibrating suspension point JO - Russian journal of nonlinear dynamics PY - 2017 SP - 81 EP - 104 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_1_a5/ LA - ru ID - ND_2017_13_1_a5 ER -
%0 Journal Article %A M. V. Belichenko %A O. V. Kholostova %T On the stability of stationary rotations in the approximate problem of motion of Lagrange’s top with a vibrating suspension point %J Russian journal of nonlinear dynamics %D 2017 %P 81-104 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_1_a5/ %G ru %F ND_2017_13_1_a5
M. V. Belichenko; O. V. Kholostova. On the stability of stationary rotations in the approximate problem of motion of Lagrange’s top with a vibrating suspension point. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 81-104. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a5/
[1] Lagrange J. L., Méchanique analitique, Desaint, Paris, 1788, 530 pp.
[2] Routh E. J., The advanced part of a treatise on the dynamics of a system of rigid bodies: Being part II of a treatise on the whole subject, 6th ed., Dover, New York, 1955, 484 pp. | MR
[3] Tournaire L.-M., “Mémoire sur la rotation des corps pesant”, C. R. Acad. Sci. Paris, 50:1 (1860), 476–481
[4] Skimel' V. N., “On the problems of stability of motion of a solid rigid body about a stationary point”, Prikl. Mat. Mekh., 20:1 (1956), 130–132 (Russian) | MR | Zbl
[5] Chetaev N. G., “On stability of rotation of a rigid body with a single fixed point in the Lagrangean case”, Prikl. Mat. Mekh., 18:1 (1954), 123–124 (Russian) | Zbl
[6] Rose N. V., Rigid body dynamics, Kubuch, Leningrad, 1932 (Russian)
[7] Grammel R., Der Kreisel: Seine Theorie und seine Anwendungen, 2nd ed., Springer, Berlin, 1950, XI+284 pp. | Zbl
[8] Magnus K., Kreisel: Theorie und Anwendungen, Springer, Berlin, 1971, XII + 493 pp. | MR | Zbl
[9] Gorr G. A., Kudryashova L. W., Stepanova L. A., Classical problems of rigid body dynamics: Development and present state, Naukova Dumka, Kiev, 1978 (Russian) | MR
[10] Borisov A. V., Mamaev I. S., Dynamics of a rigid body: Hamiltonian methods, integrability, chaos, 2nd ed., R Dynamics, Institute of Computer Science, Izhevsk, 2005 (Russian) | MR
[11] Zhuravlev V. Ph., Klimov D. M., Applied methods in oscillation theory, Nauka, Moscow, 1988 (Russian) | MR
[12] Chelnokov Yu. N., “Motion of a heavy symmetric rigid body with a mobile point of a support”, Mech. Solids, 25:4 (1990), 1–7
[13] Koshlyakov V. N., “Structural transformations of dynamical systems with gyroscopic forces”, J. Appl. Math. Mech., 61:5 (1997), 751–756 | DOI | MR | Zbl
[14] Savchenko Ya. A., Kanibolotskiy V. V., “On the stability of a unbalanced system of two Lagrange's gyroscopes with a vibrating suspension point”, Mekh. Tverd. Tela, 1991, no. 2, 101–104 (Russian) | Zbl
[15] Kholostova O. V., “On the periodic motion of Lagrange's top with vibrating suspension”, Mech. Solids, 2002, no. 1, 26–38
[16] Kholostova O. V., “The dynamics of a Lagrange top with a vibrating suspension point”, J. Appl. Math. Mech., 63:5 (1999), 741–750 | DOI | MR | Zbl
[17] Kholostova O. V., “A case of periodic motion for a Lagrange gyroscope with a vibrating suspension”, Dokl. Phys., 45:12 (2000), 690–693 | DOI | MR
[18] Kholostova O. V., “On a case of periodic motions of the Lagrangian top with vibrating fixed point”, Regul. Chaotic Dyn., 4:4 (1999), 81–93 | DOI | MR | Zbl
[19] Kholostova O. V., “The stability of a «sleeping» lagrange for with a vibrating suspension point”, J. Appl. Math. Mech., 64:5 (2000), 821–831 | DOI | MR | Zbl
[20] Markeev A. P., “On the motion of a heavy dynamically symmetric rigid body with vibrating suspension point”, Mech. Solids, 47:4 (2012), 373–379 | DOI
[21] Markeev A. P., “On the theory of motion of a rigid body with a vibrating suspension”, Dokl. Phys., 54:8 (2009), 392–396 | DOI | MR | Zbl
[22] Markeyev A. P., “The equations of the approximate theory of the motion of a rigid body with a vibrating suspension point”, J. Appl. Math. Mech., 75:2 (2011), 132–139 | DOI | MR | Zbl
[23] Markeev A. P., Theoretical mechanics, R Dynamics, Institute of Computer Science, Izhevsk, 2007 (Russian)
[24] Markeev A. P., Libration points in celestial mechanics and space dynamics, Nauka, Moscow, 1978 (Russian)
[25] Yudovich V. I., “Vibrodynamics and vibrogeometry in mechanical systems with constraints”, Uspekhi Mekh., 4:3 (2006), 26–158 (Russian)
[26] Kholostova O. V., “On motions of a pendulum with a vibrating suspension point”, Teor. Mekh., 24, 2003, 157–167 (Russian)