Equilibrium states of finite-dimensional approximations of a two-dimensional incompressible inviscid fluid
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 55-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Equilibrium states of Arakawa approximations of a two-dimensional incompressible inviscid fluid are investigated in the case of high resolution $8192^2$. Comparison of these states with quasiequilibrium states of a viscid fluid is made. Special attention is paid to the stepped shape of large coherent structures and to the presence of small vortices in final states. It is shown that the large-scale dynamics of Arakawa approximations are similar to the theoretical predictions for an ideal fluid. Cesaro convergence is investigated as an alternative technique to get condensed states. Additionally, it can be used to solve the problem of nonstationary final states.
Mots-clés : incompressible inviscid fluid
Keywords: equilibrium states, finite-dimensional approximations, Hamiltonian system.
@article{ND_2017_13_1_a4,
     author = {P. A. Perezhogin and V. P. Dymnikov},
     title = {Equilibrium states of finite-dimensional approximations of a two-dimensional incompressible inviscid fluid},
     journal = {Russian journal of nonlinear dynamics},
     pages = {55--79},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a4/}
}
TY  - JOUR
AU  - P. A. Perezhogin
AU  - V. P. Dymnikov
TI  - Equilibrium states of finite-dimensional approximations of a two-dimensional incompressible inviscid fluid
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 55
EP  - 79
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_1_a4/
LA  - ru
ID  - ND_2017_13_1_a4
ER  - 
%0 Journal Article
%A P. A. Perezhogin
%A V. P. Dymnikov
%T Equilibrium states of finite-dimensional approximations of a two-dimensional incompressible inviscid fluid
%J Russian journal of nonlinear dynamics
%D 2017
%P 55-79
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_1_a4/
%G ru
%F ND_2017_13_1_a4
P. A. Perezhogin; V. P. Dymnikov. Equilibrium states of finite-dimensional approximations of a two-dimensional incompressible inviscid fluid. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 55-79. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a4/

[1] Kozlov V. V., Gibbs ensembles and nonequilibrium statistical mechanics, R Dynamics, Institute of Computer Science, Izhevsk, 2008 (Russian)

[2] Baklanovskaya V., “Investigation of the method of nets for two-dimensional equations of the Navier – Stokes type with non-negative viscosity: 2”, USSR Comput. Math. Math. Phys., 24:6 (1984), 145–156 | DOI | MR | Zbl

[3] Yudovich V., “Non-stationary flows of an ideal incompressible liquid”, USSR Comput. Math. Math. Phys., 3:6 (1963), 1407–1456 | DOI | MR | Zbl

[4] Abramov R. V., Statistically relevant and irrelevant conserved quantities for the equilibrium statistical description of the truncated Burger – Hopf equation and the equations for barotropic flow, PhD dissertation, Rensselaer Polytechnic Inst., Troy, N.Y., 2002, 264 pp. | MR

[5] Abramov R. V., Majda A. J., “Statistically relevant conserved quantities for truncated quasigeostrophic flow”, Proc. Natl. Acad. Sci., 100:7 (2003), 3841–3846 | DOI | MR | Zbl

[6] Arakawa A., “Computational design for long-term numerical integration of the equations of fluid motion: 1. Two-dimensional incompressible flow”, J. Comput. Phys., 1:1 (1966), 119–143 | DOI | MR | Zbl

[7] Arakawa A., Design of the UCLA general circulation model, Numerical simulation of weather and climate: Technical report no. 7 (NASA-CR-131531), California Univ., Los Angeles, Calif., 1972, 124 pp.

[8] Basdevant C., Sadourny R., “Ergodic properties of inviscid truncated models of two-dimensional incompressible flows”, J. Fluid Mech., 69:4 (1975), 673–688 | DOI | Zbl

[9] Bouchet F., “Simpler variational problems for statistical equilibria of the 2D Euler equation and other systems with long range interactions”, Phys. D, 237:14–17 (2008), 1976–1981 | DOI | MR | Zbl

[10] Bouchet F., Corvellec M., “Invariant measures of the 2D Euler and Vlasov equations”, J. Stat. Mech., 2010:8 (2010), P08021, 40 pp. | DOI

[11] Bouchet F., Venaille A., “Statistical mechanics of two-dimensional and geophysical flows”, Phys. Rep., 515:5 (2012), 227–295 | DOI | MR

[12] Dritschel D. G., Qi W., Marston J., “On the late-time behaviour of a bounded, inviscid two-dimensional flow”, J. Fluid Mech., 783 (2015), 1–22 | DOI | MR

[13] Dubinkina S., Frank J., “Statistical mechanics of Arakawa’s discretizations”, J. Comput. Phys., 227:2 (2007), 1286–1305 | DOI | MR | Zbl

[14] Dubinkina S., Frank J., “Statistical relevance of vorticity conservation in the Hamiltonian particle-mesh method”, J. Comput. Phys., 229:7 (2010), 2634–2648 | DOI | MR | Zbl

[15] Dymnikov V., Gritsoun A., “Climate model attractors: Chaos, quasi-regularity and sensitivity to small perturbations of external forcing”, Nonlinear Proc. Geophys., 8:4–5 (2001), 201–209 | DOI

[16] Ellis R. S., “The theory of large deviations: From Boltzmann’s 1877 calculation to equilibrium macrostates in 2D turbulence”, Phys. D, 133:1 (1999), 106–136 | DOI | MR | Zbl

[17] Fox D. G., Orszag S. A., “Inviscid dynamics of two-dimensional turbulence”, Phys. Fluids, 16:2 (1973), 169–171 | DOI | Zbl

[18] Joyce G., Montgomery D., “Negative temperature states for the two-dimensional guiding-centre plasma”, J. Plasma Phys., 10:1 (1973), 107–121 | DOI

[19] Khinchin A., Mathematical foundations of statistical mechanics, Dover, New York, 1949, 179 pp. | MR | Zbl

[20] Kraichnan R. H., “Inertial ranges in two-dimensional turbulence”, Phys. Fluids, 10:7 (1967), 1417–1423 | DOI

[21] Kraichnan R. H., “Statistical dynamics of two-dimensional flow”, J. Fluid Mech., 67:1 (1975), 155–175 | DOI | Zbl

[22] Kukharkin N. N., “Coherent structure formation, phase correlations, and finite-size effects in 2D turbulence”, J. Sci. Comput., 10:4 (1995), 409–448 | DOI | Zbl

[23] Marchioro C., Pulvirenti M., Mathematical theory of incompressible nonviscous fluids, Appl. Math. Sci., 96, Springer, New York, 1994, 284 pp. | DOI | MR | Zbl

[24] Brands H., Stulemeyer J., Pasmanter R. A., Schep T. J., “A mean field prediction of the asymptotic state of decaying 2D turbulence”, Phys. Fluids, 9:10 (1997), 2815–2817 | DOI

[25] Miller J., “Statistical mechanics of Euler equations in two dimensions”, Phys. Rev. Lett., 65:17 (1990), 2137–2140 | DOI | MR | Zbl

[26] Montgomery D. C., Joyce G., “Statistical mechanics of «negative temperature» states”, Phys. Fluids, 17 (1974), 1139–1145 | DOI | MR

[27] Newton P. K., The $N$-vortex problem: Analytical techniques, Appl. Math. Sci., 145, Springer, New York, 2001, 420 pp. | DOI | MR | Zbl

[28] Newton P. K., “The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere”, J. Fluid Mech., 786 (2016), 1–4 | DOI | MR

[29] Onsager L., “Statistical hydrodynamics”, Nuovo Cimento (9), 6, Supplemento:2, Convegno Internazionale di Meccanica Statistica (1949), 279–287 | DOI | MR

[30] Perezhogin P. A., Glazunov A. V., Mortikov E. V., Dymnikov V. P., “Comparison of numerical advection schemes in two-dimensional turbulence simulation”, Rus. J. Num. Anal. Math. Model., 32:1 (2017) (to appear)

[31] Qi W., Marston J. B., “Hyperviscosity and statistical equilibria of Euler turbulence on the torus and the sphere”, J. Stat. Mech. Theory Exp., 2014, no. 7, P07020, 57 pp. | MR

[32] Robert R., “On the statistical mechanics of 2D Euler equation”, Comm. Math. Phys., 212:1 (2000), 245–256 | DOI | MR | Zbl

[33] Robert R., Sommeria J., “Statistical equilibrium states for two-dimensional flows”, J. Fluid Mech., 229 (1991), 291–310 | DOI | MR | Zbl

[34] Schneider K., Farge M., “Final states of decaying 2D turbulence in bounded domains: Influence of the geometry”, Phys. D, 237:14 (2008), 2228–2233 | DOI | MR | Zbl

[35] Segre E., Kida S., “Late states of incompressible 2D decaying vorticity fields”, Fluid Dynam. Res., 23:2 (1998), 89–112 | DOI | MR | Zbl

[36] Matthaeus W. H., Stribling W. T., Martinez D., Oughton S., Montgomery D., “Selective decay and coherent vortices in two-dimensional incompressible turbulence”, Phys. Rev. Lett., 66:21 (1991), 2731–2734 | DOI

[37] Tabeling P., “Two-dimensional turbulence: A physicist approach”, Phys. Rep., 362:1 (2002), 1–62 | DOI | MR | Zbl

[38] Turkington B., “Statistical equilibrium measures and coherent states in two-dimensional turbulence”, Comm. Pure Appl. Math., 52:7 (1999), 781–809 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[39] Venaille A., Bouchet F., “Statistical ensemble inequivalence and bicritical points for two-dimensional flows and geophysical flows”, Phys. Rev. Lett., 102:10 (2009), 104501, 4 pp. | DOI

[40] Venaille A., Dauxois T., Ruffo S., “Violent relaxation in two-dimensional flows with varying interaction range”, Phys. Rev. E, 92:1 (2015), 011001, 5 pp. | DOI

[41] Yin Z., Montgomery D. C., Clercx H. J. H., “Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of «patches» and «points»”, Phys. Fluids, 15:7 (2003), 1937–1953 | DOI | MR