Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_1_a4, author = {P. A. Perezhogin and V. P. Dymnikov}, title = {Equilibrium states of finite-dimensional approximations of a two-dimensional incompressible inviscid fluid}, journal = {Russian journal of nonlinear dynamics}, pages = {55--79}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a4/} }
TY - JOUR AU - P. A. Perezhogin AU - V. P. Dymnikov TI - Equilibrium states of finite-dimensional approximations of a two-dimensional incompressible inviscid fluid JO - Russian journal of nonlinear dynamics PY - 2017 SP - 55 EP - 79 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_1_a4/ LA - ru ID - ND_2017_13_1_a4 ER -
%0 Journal Article %A P. A. Perezhogin %A V. P. Dymnikov %T Equilibrium states of finite-dimensional approximations of a two-dimensional incompressible inviscid fluid %J Russian journal of nonlinear dynamics %D 2017 %P 55-79 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_1_a4/ %G ru %F ND_2017_13_1_a4
P. A. Perezhogin; V. P. Dymnikov. Equilibrium states of finite-dimensional approximations of a two-dimensional incompressible inviscid fluid. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 55-79. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a4/
[1] Kozlov V. V., Gibbs ensembles and nonequilibrium statistical mechanics, R Dynamics, Institute of Computer Science, Izhevsk, 2008 (Russian)
[2] Baklanovskaya V., “Investigation of the method of nets for two-dimensional equations of the Navier – Stokes type with non-negative viscosity: 2”, USSR Comput. Math. Math. Phys., 24:6 (1984), 145–156 | DOI | MR | Zbl
[3] Yudovich V., “Non-stationary flows of an ideal incompressible liquid”, USSR Comput. Math. Math. Phys., 3:6 (1963), 1407–1456 | DOI | MR | Zbl
[4] Abramov R. V., Statistically relevant and irrelevant conserved quantities for the equilibrium statistical description of the truncated Burger – Hopf equation and the equations for barotropic flow, PhD dissertation, Rensselaer Polytechnic Inst., Troy, N.Y., 2002, 264 pp. | MR
[5] Abramov R. V., Majda A. J., “Statistically relevant conserved quantities for truncated quasigeostrophic flow”, Proc. Natl. Acad. Sci., 100:7 (2003), 3841–3846 | DOI | MR | Zbl
[6] Arakawa A., “Computational design for long-term numerical integration of the equations of fluid motion: 1. Two-dimensional incompressible flow”, J. Comput. Phys., 1:1 (1966), 119–143 | DOI | MR | Zbl
[7] Arakawa A., Design of the UCLA general circulation model, Numerical simulation of weather and climate: Technical report no. 7 (NASA-CR-131531), California Univ., Los Angeles, Calif., 1972, 124 pp.
[8] Basdevant C., Sadourny R., “Ergodic properties of inviscid truncated models of two-dimensional incompressible flows”, J. Fluid Mech., 69:4 (1975), 673–688 | DOI | Zbl
[9] Bouchet F., “Simpler variational problems for statistical equilibria of the 2D Euler equation and other systems with long range interactions”, Phys. D, 237:14–17 (2008), 1976–1981 | DOI | MR | Zbl
[10] Bouchet F., Corvellec M., “Invariant measures of the 2D Euler and Vlasov equations”, J. Stat. Mech., 2010:8 (2010), P08021, 40 pp. | DOI
[11] Bouchet F., Venaille A., “Statistical mechanics of two-dimensional and geophysical flows”, Phys. Rep., 515:5 (2012), 227–295 | DOI | MR
[12] Dritschel D. G., Qi W., Marston J., “On the late-time behaviour of a bounded, inviscid two-dimensional flow”, J. Fluid Mech., 783 (2015), 1–22 | DOI | MR
[13] Dubinkina S., Frank J., “Statistical mechanics of Arakawa’s discretizations”, J. Comput. Phys., 227:2 (2007), 1286–1305 | DOI | MR | Zbl
[14] Dubinkina S., Frank J., “Statistical relevance of vorticity conservation in the Hamiltonian particle-mesh method”, J. Comput. Phys., 229:7 (2010), 2634–2648 | DOI | MR | Zbl
[15] Dymnikov V., Gritsoun A., “Climate model attractors: Chaos, quasi-regularity and sensitivity to small perturbations of external forcing”, Nonlinear Proc. Geophys., 8:4–5 (2001), 201–209 | DOI
[16] Ellis R. S., “The theory of large deviations: From Boltzmann’s 1877 calculation to equilibrium macrostates in 2D turbulence”, Phys. D, 133:1 (1999), 106–136 | DOI | MR | Zbl
[17] Fox D. G., Orszag S. A., “Inviscid dynamics of two-dimensional turbulence”, Phys. Fluids, 16:2 (1973), 169–171 | DOI | Zbl
[18] Joyce G., Montgomery D., “Negative temperature states for the two-dimensional guiding-centre plasma”, J. Plasma Phys., 10:1 (1973), 107–121 | DOI
[19] Khinchin A., Mathematical foundations of statistical mechanics, Dover, New York, 1949, 179 pp. | MR | Zbl
[20] Kraichnan R. H., “Inertial ranges in two-dimensional turbulence”, Phys. Fluids, 10:7 (1967), 1417–1423 | DOI
[21] Kraichnan R. H., “Statistical dynamics of two-dimensional flow”, J. Fluid Mech., 67:1 (1975), 155–175 | DOI | Zbl
[22] Kukharkin N. N., “Coherent structure formation, phase correlations, and finite-size effects in 2D turbulence”, J. Sci. Comput., 10:4 (1995), 409–448 | DOI | Zbl
[23] Marchioro C., Pulvirenti M., Mathematical theory of incompressible nonviscous fluids, Appl. Math. Sci., 96, Springer, New York, 1994, 284 pp. | DOI | MR | Zbl
[24] Brands H., Stulemeyer J., Pasmanter R. A., Schep T. J., “A mean field prediction of the asymptotic state of decaying 2D turbulence”, Phys. Fluids, 9:10 (1997), 2815–2817 | DOI
[25] Miller J., “Statistical mechanics of Euler equations in two dimensions”, Phys. Rev. Lett., 65:17 (1990), 2137–2140 | DOI | MR | Zbl
[26] Montgomery D. C., Joyce G., “Statistical mechanics of «negative temperature» states”, Phys. Fluids, 17 (1974), 1139–1145 | DOI | MR
[27] Newton P. K., The $N$-vortex problem: Analytical techniques, Appl. Math. Sci., 145, Springer, New York, 2001, 420 pp. | DOI | MR | Zbl
[28] Newton P. K., “The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere”, J. Fluid Mech., 786 (2016), 1–4 | DOI | MR
[29] Onsager L., “Statistical hydrodynamics”, Nuovo Cimento (9), 6, Supplemento:2, Convegno Internazionale di Meccanica Statistica (1949), 279–287 | DOI | MR
[30] Perezhogin P. A., Glazunov A. V., Mortikov E. V., Dymnikov V. P., “Comparison of numerical advection schemes in two-dimensional turbulence simulation”, Rus. J. Num. Anal. Math. Model., 32:1 (2017) (to appear)
[31] Qi W., Marston J. B., “Hyperviscosity and statistical equilibria of Euler turbulence on the torus and the sphere”, J. Stat. Mech. Theory Exp., 2014, no. 7, P07020, 57 pp. | MR
[32] Robert R., “On the statistical mechanics of 2D Euler equation”, Comm. Math. Phys., 212:1 (2000), 245–256 | DOI | MR | Zbl
[33] Robert R., Sommeria J., “Statistical equilibrium states for two-dimensional flows”, J. Fluid Mech., 229 (1991), 291–310 | DOI | MR | Zbl
[34] Schneider K., Farge M., “Final states of decaying 2D turbulence in bounded domains: Influence of the geometry”, Phys. D, 237:14 (2008), 2228–2233 | DOI | MR | Zbl
[35] Segre E., Kida S., “Late states of incompressible 2D decaying vorticity fields”, Fluid Dynam. Res., 23:2 (1998), 89–112 | DOI | MR | Zbl
[36] Matthaeus W. H., Stribling W. T., Martinez D., Oughton S., Montgomery D., “Selective decay and coherent vortices in two-dimensional incompressible turbulence”, Phys. Rev. Lett., 66:21 (1991), 2731–2734 | DOI
[37] Tabeling P., “Two-dimensional turbulence: A physicist approach”, Phys. Rep., 362:1 (2002), 1–62 | DOI | MR | Zbl
[38] Turkington B., “Statistical equilibrium measures and coherent states in two-dimensional turbulence”, Comm. Pure Appl. Math., 52:7 (1999), 781–809 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[39] Venaille A., Bouchet F., “Statistical ensemble inequivalence and bicritical points for two-dimensional flows and geophysical flows”, Phys. Rev. Lett., 102:10 (2009), 104501, 4 pp. | DOI
[40] Venaille A., Dauxois T., Ruffo S., “Violent relaxation in two-dimensional flows with varying interaction range”, Phys. Rev. E, 92:1 (2015), 011001, 5 pp. | DOI
[41] Yin Z., Montgomery D. C., Clercx H. J. H., “Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of «patches» and «points»”, Phys. Fluids, 15:7 (2003), 1937–1953 | DOI | MR