Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_1_a2, author = {L. A. Klimina and B. Ya. Lokshin}, title = {On a constructive method of search for rotary and oscillatory modes in autonomous dynamical systems}, journal = {Russian journal of nonlinear dynamics}, pages = {25--40}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a2/} }
TY - JOUR AU - L. A. Klimina AU - B. Ya. Lokshin TI - On a constructive method of search for rotary and oscillatory modes in autonomous dynamical systems JO - Russian journal of nonlinear dynamics PY - 2017 SP - 25 EP - 40 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_1_a2/ LA - ru ID - ND_2017_13_1_a2 ER -
%0 Journal Article %A L. A. Klimina %A B. Ya. Lokshin %T On a constructive method of search for rotary and oscillatory modes in autonomous dynamical systems %J Russian journal of nonlinear dynamics %D 2017 %P 25-40 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_1_a2/ %G ru %F ND_2017_13_1_a2
L. A. Klimina; B. Ya. Lokshin. On a constructive method of search for rotary and oscillatory modes in autonomous dynamical systems. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 25-40. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a2/
[1] Bonnin M., “Existence, number, and stability of limit cycles in weakly dissipative, strongly nonlinear oscillators”, Nonlinear Dynam., 62:1–2 (2010), 321–332 | DOI | MR | Zbl
[2] Gavrilov L., Iliev I. D., “Perturbations of quadratic Hamiltonian two-saddle cycles”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32:2 (2015), 307–324 | DOI | MR | Zbl
[3] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Theory of bifurcations of dynamic systems on a plane, Wiley, New York, 1973, 482 pp. | MR | MR
[4] Arnol'd V. I., “Forgotten and neglected theories of Poincaré”, Russian Math. Surveys, 61:1 (2006), 1–18 | DOI | DOI | MR | Zbl
[5] Bautin N. N., Leontovich A. A., Methods and techniques of the qualitative study of dynamical systems on the plane, Nauka, Moscow, 1990 (Russian) | MR
[6] Dosaev M. Z., Lin Ch.-H., Lu W.-L., Samsonov V. A., Selyutskii Yu. D., “A qualitative analysis of the steady modes of operation of small wind power generators”, J. Appl. Math. Mech., 73:3 (2009), 259–263 | DOI | MR
[7] Duboshin G. N., Celestial mechanics: Analytical and qualitative methods, 2nd ed., rev. and enl., Nauka, Moscow, 1978 (Russian)
[8] Klimina L. A., “Rotational modes of motion for an aerodynamic pendulum with a vertical rotation axis”, Mosc. Univ. Mech. Bull., 64:5 (2009), 126–129 | DOI
[9] Korolev S. A., Morozov A. D., “On periodic perturbations of self-oscillating pendulum equations”, Nelin. Dinam., 6:1 (2010), 79–89 (Russian)
[10] Kostromina O. S., Morozov A. D., “On time periodic perturbations of two dimensional Hamiltonian systems with a homoclinic «figure-eight»”, Vestn. Nighegorodsk. Univ., 2013, no. 1, 177–183 (Russian)
[11] Morozov A. D., Quasi-conservative systems: Cycles, resonances and chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci. Publ., River Edge, N.J., 1999, 325 pp. | DOI | MR
[12] Pontryagin L. S., “On dynamical systems close to Hamiltonian systems”, Zh. Èksp. Teor. Fiz., 4:8 (1934), 234–238 (Russian)
[13] Shalimova E. S., “Steady and periodic modes in the problem of motion of a heavy material point on a rotating sphere (the viscous friction case)”, Mosc. Univ. Mech. Bull., 69:4 (2014), 89–96 | DOI | MR | Zbl