Analysis of stochastic excitability in a simple kinetic model of glycolysis
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 13-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the Selkov model describing glycolytic oscillations of substrate and product is considered.We have obtained a parametric zone of equilibria where, depending on the initial data, two types of transients are observed. It is shown that in this zone the system is highly sensitive even to small random perturbations. We demonstrate and study the phenomenon of stochastic generation of large-amplitude oscillations in the equilibrium zone. In the study of probability distributions of random trajectories of the forced system, it is shown that this phenomenon is associated with a stochastic $P$-bifurcation. The deformations of the frequency characteristics are confirmed by spectral analysis. It is shown that in the regime of the stochastic excitation of stable equilibrium, the dominant frequency of the noise-induced spikes practically coincides with the frequency of the deterministic relaxation oscillations observed just after the Andronov–Hopf bifurcation.
Keywords: glycolysis, Selkov model, stochastic excitability, generation of large-amplitude oscillations, spectral density.
Mots-clés : bifurcations
@article{ND_2017_13_1_a1,
     author = {I. A. Bashkirtseva},
     title = {Analysis of stochastic excitability in a simple kinetic model of glycolysis},
     journal = {Russian journal of nonlinear dynamics},
     pages = {13--23},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a1/}
}
TY  - JOUR
AU  - I. A. Bashkirtseva
TI  - Analysis of stochastic excitability in a simple kinetic model of glycolysis
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 13
EP  - 23
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_1_a1/
LA  - ru
ID  - ND_2017_13_1_a1
ER  - 
%0 Journal Article
%A I. A. Bashkirtseva
%T Analysis of stochastic excitability in a simple kinetic model of glycolysis
%J Russian journal of nonlinear dynamics
%D 2017
%P 13-23
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_1_a1/
%G ru
%F ND_2017_13_1_a1
I. A. Bashkirtseva. Analysis of stochastic excitability in a simple kinetic model of glycolysis. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a1/

[1] Anishchenko V., Astakhov V., Neiman A., Vadivasova T., Schimansky-Geier L., Nonlinear dynamics of chaotic and stochastic systems: Tutorial and modern developments, Springer Series in Synergetics, Springer, Berlin, 2007, XIII, 446 pp. | MR | Zbl

[2] Gurel D., Gurel O., Oscillations in chemical reactions, Topics in Current Chemistry, 118, Springer, Berlin, 1983, 121 pp.

[3] Ivanitskiy G. R., Krinskiy V. I., Selkov E. E., Mathematical biophysics of cell, Nauka, Moscow, 1978 (Russian)

[4] Kaimachnikov N. P., Sel'kov Ye. Ye., “Hysteresis and multiplicity of dynamic states in an open two-substrate enzymatic reaction with substrate repression”, Biophysics (New York), 20:4 (1975), 713–718

[5] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Mathematical modeling in biophysics, Nauka, Moscow, 1975 (Russian) | MR

[6] Ryashko L. B., Smirnov A. V., “Deterministic and stochastic stability analysis for glycolitic oscillator”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 13:5–6 (2005), 99–112 (Russian) | Zbl

[7] Arnold L., Random dynamical systems, Springer, Berlin, 1998, 586 pp. | MR

[8] Boiteux A., Goldbeter A., Hess B., “Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: A model and experimental study”, Proc. Natl. Acad. Sci. USA, 72:10 (1975), 3829–3833 | DOI

[9] García-Olivares A., Villarroel M., Marijuán P. C., “Enzymes as molecular automata: A stochastic model of self-oscillatory glycolytic cycles in cellular metabolism”, Biosystems, 56:2–3 (2000), 121–129 | MR

[10] Goldbeter A., “Mechanism for oscillatory synthesis of cyclic AMP in Dictyostelium discoideum”, Nature, 253:5492 (1975), 540–542 | DOI

[11] Goldbeter A., Lefever R., “Dissipative tructures for an allosteric model: Application to glycolytic oscillations”, Biophys. J., 12:10 (1972), 1302–1315 | DOI

[12] Goldbeter A., Biochemical oscillations and cellular rhythms. The molecular bases of periodic and chaotic behaviour, Cambridge University Press, Cambridge, 1996, 629 pp. | Zbl

[13] Guckenheimer J., Holmes Ph., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, New York, 1983, 453 pp. | MR | Zbl

[14] Higgins J., “A chemical mechanism for oscillation of glycolytic intermediates in yeast cells”, Proc. Natl. Acad. Sci. USA, 51 (1964), 989–994 | DOI

[15] Lindner B., García-Ojalvo J., Neiman A., Schimansky-Geier L., “Effects of noise in excitable systems”, Phys. Rep., 392:6 (2004), 321–424 | DOI

[16] Schuster P., Stochasticity in processes: Fundamentals and applications to chemistry and biology, Springer, Berlin, 2016, 718 pp. | MR | Zbl

[17] Sel'kov E. E., “Self-oscillations in glycolysis: 1. A simple kinetic model”, Eur. J. Biochem., 4:1 (1968), 79–86 | DOI

[18] Strogatz S., Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, 2nd ed., Westview, Boulder, Colo., 2014, 513 pp.

[19] Xu W., Kong J. S., Chen P., “Single-molecule kinetic theory of heterogeneous and enzyme catalysis”, J. Phys. Chem. C, 113:6 (2009), 2393–2404 | DOI