Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_1_a1, author = {I. A. Bashkirtseva}, title = {Analysis of stochastic excitability in a simple kinetic model of glycolysis}, journal = {Russian journal of nonlinear dynamics}, pages = {13--23}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a1/} }
I. A. Bashkirtseva. Analysis of stochastic excitability in a simple kinetic model of glycolysis. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a1/
[1] Anishchenko V., Astakhov V., Neiman A., Vadivasova T., Schimansky-Geier L., Nonlinear dynamics of chaotic and stochastic systems: Tutorial and modern developments, Springer Series in Synergetics, Springer, Berlin, 2007, XIII, 446 pp. | MR | Zbl
[2] Gurel D., Gurel O., Oscillations in chemical reactions, Topics in Current Chemistry, 118, Springer, Berlin, 1983, 121 pp.
[3] Ivanitskiy G. R., Krinskiy V. I., Selkov E. E., Mathematical biophysics of cell, Nauka, Moscow, 1978 (Russian)
[4] Kaimachnikov N. P., Sel'kov Ye. Ye., “Hysteresis and multiplicity of dynamic states in an open two-substrate enzymatic reaction with substrate repression”, Biophysics (New York), 20:4 (1975), 713–718
[5] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Mathematical modeling in biophysics, Nauka, Moscow, 1975 (Russian) | MR
[6] Ryashko L. B., Smirnov A. V., “Deterministic and stochastic stability analysis for glycolitic oscillator”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 13:5–6 (2005), 99–112 (Russian) | Zbl
[7] Arnold L., Random dynamical systems, Springer, Berlin, 1998, 586 pp. | MR
[8] Boiteux A., Goldbeter A., Hess B., “Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: A model and experimental study”, Proc. Natl. Acad. Sci. USA, 72:10 (1975), 3829–3833 | DOI
[9] García-Olivares A., Villarroel M., Marijuán P. C., “Enzymes as molecular automata: A stochastic model of self-oscillatory glycolytic cycles in cellular metabolism”, Biosystems, 56:2–3 (2000), 121–129 | MR
[10] Goldbeter A., “Mechanism for oscillatory synthesis of cyclic AMP in Dictyostelium discoideum”, Nature, 253:5492 (1975), 540–542 | DOI
[11] Goldbeter A., Lefever R., “Dissipative tructures for an allosteric model: Application to glycolytic oscillations”, Biophys. J., 12:10 (1972), 1302–1315 | DOI
[12] Goldbeter A., Biochemical oscillations and cellular rhythms. The molecular bases of periodic and chaotic behaviour, Cambridge University Press, Cambridge, 1996, 629 pp. | Zbl
[13] Guckenheimer J., Holmes Ph., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, New York, 1983, 453 pp. | MR | Zbl
[14] Higgins J., “A chemical mechanism for oscillation of glycolytic intermediates in yeast cells”, Proc. Natl. Acad. Sci. USA, 51 (1964), 989–994 | DOI
[15] Lindner B., García-Ojalvo J., Neiman A., Schimansky-Geier L., “Effects of noise in excitable systems”, Phys. Rep., 392:6 (2004), 321–424 | DOI
[16] Schuster P., Stochasticity in processes: Fundamentals and applications to chemistry and biology, Springer, Berlin, 2016, 718 pp. | MR | Zbl
[17] Sel'kov E. E., “Self-oscillations in glycolysis: 1. A simple kinetic model”, Eur. J. Biochem., 4:1 (1968), 79–86 | DOI
[18] Strogatz S., Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, 2nd ed., Westview, Boulder, Colo., 2014, 513 pp.
[19] Xu W., Kong J. S., Chen P., “Single-molecule kinetic theory of heterogeneous and enzyme catalysis”, J. Phys. Chem. C, 113:6 (2009), 2393–2404 | DOI