Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_4_a7, author = {G. V. Gorr}, title = {On asymptotic motions of a heavy rigid body in the {Bobylev{\textendash}Steklov} case}, journal = {Russian journal of nonlinear dynamics}, pages = {651--661}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_4_a7/} }
G. V. Gorr. On asymptotic motions of a heavy rigid body in the Bobylev–Steklov case. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 4, pp. 651-661. http://geodesic.mathdoc.fr/item/ND_2016_12_4_a7/
[1] Kneser A., “Studien über Bewegungsvorgänge in der Umgebung instabiler Gleichgewichtsglage (zwieter Aufsatz)”, J. Reine Angew. Math., 11:3 (1897), 186–223 | MR
[2] Perron O., “Über Stabilität und asymptotischen Verhalten der Integrale von Differentialgleichungssystem”, Math. Z., 29 (1929), 129–160 | DOI | MR
[3] Bohl P., “Über die Bewegung eines mechanischen Systems in der Nähe einer Gleichgewichtslage”, J. Reine Angew. Math., 127:3 (1904), 179–276 | MR | Zbl
[4] Cesari L., Asymptotic behavior and stability problems in ordinary differential equations, Ergeb. Math. Grenzgeb. (N. F.), 16, 2nd ed., Springer, Berlin, 1963, viii+271 pp. | MR | MR | Zbl
[5] Markeev A. P., Linear Hamiltonian systems and some problems of stability of the satellite center of mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009 (Russian)
[6] Bolotin S. V., Kozlov V. V., “Asymptotic solutions of the equations of dynamics”, Mosc. Univ. Mech. Bull., 35:3–4 (1980), 82–88 | Zbl | Zbl
[7] Kozlov V. V., Palamodov V. P., “Asymptotic solutions of equations of classical mechanics”, Sov. Math. Dokl., 25 (1982), 335–339 | MR | Zbl
[8] Markeev A. P., “Plane and quasi-plane rotations of a heavy rigid body about a fixed point”, Izv. AN SSSR. Mekh. Tverd. Tela, 1988, no. 4, 29–36 (Russian)
[9] Markeev A. P., “The stability of the plane motions of a rigid body in the Kovalevskaya case”, J. Appl. Math. Mech., 65:1 (2001), 47–54 | DOI | MR
[10] Markeev A. P., “On the stability of the regular precession of an asymmetric gyroscope”, Dokl. Phys., 47:11 (2002), 833–837 | DOI | MR
[11] Markeyev A. P., “The stability of the Grioli precession”, J. Appl. Math. Mech., 67:4 (2003), 497–510 | DOI | MR | Zbl
[12] Markeyev A. P., “The pendulum-like motions of a rigid body in the Goryachev – Chaplygin case”, J. Appl. Math. Mech., 68:2 (2004), 249–258 | DOI | MR | Zbl
[13] Lyapunov A. M., The general problem of the stability of motion, Gostekhizdat, Moscow, 1950, 471 pp. (Russian) | MR
[14] Varkhalev Yu. P., Gorr G. V., “Asymptotically pendulum-like motions of the Hess – Appel'rot gyroscope”, J. Appl. Math. Mech., 48:3 (1984), 353–356 | DOI
[15] Bryum A. Z., “Investigation of the regular precession of a heavy rigid body with a fixed point by Lyapunov's first method”, Mekh. Tverd. Tela, 1987, no. 19, 68–72 (Russian) | Zbl
[16] Mettler E., “Periodische und asymptotische Bewegungen des unsymmetrischen schweren Kreisels”, Math. Z., 43:1 (1937), 59–100 | DOI | MR
[17] Varkhalev Yu. N., Kovalev V. M., “Asymptotically steady motions of the gyrostat relative to the inclined axis”, Mekh. Tverd. Tela, 1990, no. 22, 43–48 (Russian) | MR | Zbl
[18] Gorr G. V., Kovalev A. I., Dynamics of a gyrostat, Naukova Dumka, Kiev, 2013
[19] Varkhalev Yu. N., Gorr G. V., “The first Lyapunov method in the study of asymptotic motions in rigid body dynamics”, Mekh. Tverd. Tela, 1992, no. 24, 25–41 | MR | Zbl
[20] Bobylev D. N., “On a particular solution of the differential equations of a heavy rigid body rotation around of a fixed point”, Tr. Otdel. Fiz. Nauk Obsch. Lyubit. Estestvozn., 8:2 (1896), 21–25 (Russian)
[21] Steklov V. A., “A certain case of motion of a heavy rigid body having a fixed point”, Tr. Otdel. Fiz. Nauk Obsch. Lyubit. Estestvozn., 8:2 (1896), 19–21 (Russian)
[22] Kharlamov P. V., Lectures on the dynamics of a rigid body, NGU, Novosibirsk, 1965 (Russian)
[23] Bardin B. S., “On stability orbital stability of pendulum like motions of a rigid body in the Bobylev – Steklov case”, Nelin. Dinam., 5:4 (2009), 535–550 (Russian)
[24] Malkin I. G., Theory of stability of motion, Univ. of Michigan, Ann Arbor, Mich., 1958, 472 pp. | MR
[25] Borisov A. V., Mamaev I. S., Rigid body dynamics: Hamiltonian methods, integrability, chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005 (Russian) | MR