Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_4_a3, author = {O. L. Revutskaya and G. P. Neverova and M. P. Kulakov and E. Ya. Frisman}, title = {Model of age-structured population dynamics: stability, multistability, and chaos}, journal = {Russian journal of nonlinear dynamics}, pages = {591--603}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_4_a3/} }
TY - JOUR AU - O. L. Revutskaya AU - G. P. Neverova AU - M. P. Kulakov AU - E. Ya. Frisman TI - Model of age-structured population dynamics: stability, multistability, and chaos JO - Russian journal of nonlinear dynamics PY - 2016 SP - 591 EP - 603 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_4_a3/ LA - ru ID - ND_2016_12_4_a3 ER -
%0 Journal Article %A O. L. Revutskaya %A G. P. Neverova %A M. P. Kulakov %A E. Ya. Frisman %T Model of age-structured population dynamics: stability, multistability, and chaos %J Russian journal of nonlinear dynamics %D 2016 %P 591-603 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2016_12_4_a3/ %G ru %F ND_2016_12_4_a3
O. L. Revutskaya; G. P. Neverova; M. P. Kulakov; E. Ya. Frisman. Model of age-structured population dynamics: stability, multistability, and chaos. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 4, pp. 591-603. http://geodesic.mathdoc.fr/item/ND_2016_12_4_a3/
[1] Dajoz R., Précis d'écologie, 3rd ed., Dunod, Paris, 1975, 549 pp.
[2] Kuznetsov A. P., Kuznetsov S. P., Pozdnyakov M. V., Sedova J. V., “Universal two-dimensional map and its radiophysical realization”, Nelin. Dinam., 8:3 (2012), 461–471 (Russian)
[3] Kuznetsov A. P., Sedova J. V., “Bifurcation of three- and four-dimensional maps: Universal properties”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 20:5 (2012), 26–43 (Russian) | Zbl
[4] Nedorezov L. V., “Dynamics of a pine looper moth population in The Netherlands: Estimation of parameters of a generalized discrete logistic model”, Evraziatsk. Entomologichesk. Zh., 14:1 (2015), 93–99 (Russian)
[5] Nikolsky G. U., Ecology of fishes, 2nd ed., TFH, Neptune City, N.J., 1978
[6] Frisman E. Ya., “Strange attractors in simple model of the population dynamics with age structure”, Dokl. Akad. Nauk, 338:2 (1994), 282–286 (Russian) | Zbl
[7] Frisman E. Ya., Luppov S. P., Skokova I. N., Tuzinkevich A. V., “Complex modes of dynamics of population size, provided the two age classes”, Mathematical research in population ecology, ed. E. Ya. Frisman, DVO AN SSSR, Vladivostok, 1988, 4–18 (Russian)
[8] Frisman E. Ya., Neverova G. P., Kulakov M. P., Zhigalskii O. A., “Changing the dynamic modes in populations with short life cycle: Mathematical modeling and simulation”, Math. Biol. Bioinf., 9:2 (2014), 414–429 (Russian) | DOI
[9] Frisman E. Ya., Neverova G. P., Kulakov M. P., Zhigalskii O. A., “Multimode phenomenon in the population dynamics of animals with short live cycles”, Dokl. Biol. Sci., 460:1 (2015), 42–47 | DOI | DOI
[10] Frisman E. Ya., Neverova G. P., Revutskaya O. L., Kulakov M. P., “Dynamic modes of two-age population model”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:2 (2010), 111–130 (Russian)
[11] Frisman E. Ya., Revutskaya O. L., Neverova G. P., “Modelling dynamics of the limited population with age and sex structure”, Matem. Mod., 22:11 (2010), 65–78 (Russian) | MR
[12] Frisman E. Ya., Skaletskaya E. I., “Strange attractors in elementary models for dynamics of the quantity of biological populations”, Obozren. Prikl. Prom. Mat., 1:6 (1994), 988–1008 (Russian) | Zbl
[13] Frisman E. Ya., Skaletskaya E. I., Kuzin A. E., “Mathematical modeling of the abundance dynamics of the northern fur seal: The simplest model of a local population”, Zh. Obshch. Biol., 41:2 (1980), 270–278 (Russian)
[14] Shapiro A. P., Luppov S. P., Recurrence equations in the theory of population biology, Nauka, Moscow, 1983 (Russian) | MR
[15] Ferriere R., Gatto M., “Chaotic population dynamics can result from natural selection”, Proc. Roy. Soc. London Ser. B, 251:1330 (1993), 33–38 | DOI
[16] Frisman E. Ya., Neverova G. P., Kulakov M. P., “Change of dynamic regimes in the population of species with short life cycles: Results of an analytical and numerical study”, Ecol. Complex., 27 (2016), 2–11 | DOI
[17] Frisman E. Ya., Neverova G. P., Revutskaya O. L., “Complex dynamics of the population with a simple age structure”, Ecol. Model., 222:12 (2011), 1943–1950 | DOI
[18] Frisman E. Ya., Skaletskaya E. I., Kuzyn A. E., “A mathematical model of the population dynamics of a local northern fur seal with seal herd”, Ecol. Model., 16:2–4 (1982), 151–172 | DOI
[19] Inchausti P., Ginzburg L. R., “Small mammals cycles in northern Europe: Patterns and evidence for the maternal effect hypothesis”, J. Anim. Ecol., 67:2 (1998), 180–194 | DOI
[20] May R. M., “Biological populations with nonoverlapping generations: Stable points, stable cycles and chaos”, Science, 186:4164 (1974), 645–647 | DOI
[21] Pisarchik A. N., Feudel U., “Control of multistability”, Phys. Rep., 540:4 (2014), 167–218 | DOI | MR
[22] Ricker W. E., “Stock and recruitment”, J. Fish. Res. Board Can., 5:5 (1954), 559–623 | DOI
[23] Romera M., Banuls V., Pastor G., Alvarez G., Montoya F., “Snail-like pattern generation with the Hénon family of maps”, Computers Graphics, 25 (2001), 529–537 | DOI
[24] Saucedo-Solorio J. M, Pisarchik A. N., Aboites V., “Shift of critical points in the parametrically modulated Hénon map with coexisting attractors”, Phys. Lett. A, 304:1–2 (2002), 21–29 | DOI | MR | Zbl
[25] Shrimali M. D., Prasad A., Ramaswamy R., Feudel U., “The nature of attractors basins in multistable systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:6 (2008), 1675–1688 | DOI | MR