On the motion of a material point on a rotating sphere with dry friction (the case of the vertical axis)
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 369-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

The motion of a heavy point on the surface of a rotating sphere is considered. It is assumed that the rotation axis does not coincide with the vertical diameter of the sphere and the angular velocity of the sphere is constant. The Lagrange equations for this system are derived. Sets of relative equilibria are found and their dependence on the parameters of the system is studied in extreme cases when the magnitude of the angular velocity or the distance between the rotation axis and the center of the sphere is large. The results are represented in graphic form. The same graphic series are also numerically plotted in the general case.
Keywords: motion of a particle on a sphere, dry friction
Mots-clés : relative equilibria.
@article{ND_2016_12_3_a5,
     author = {E. S. Shalimova},
     title = {On the motion of a material point on a rotating sphere with dry friction (the case of the vertical axis)},
     journal = {Russian journal of nonlinear dynamics},
     pages = {369--383},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_3_a5/}
}
TY  - JOUR
AU  - E. S. Shalimova
TI  - On the motion of a material point on a rotating sphere with dry friction (the case of the vertical axis)
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 369
EP  - 383
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_3_a5/
LA  - ru
ID  - ND_2016_12_3_a5
ER  - 
%0 Journal Article
%A E. S. Shalimova
%T On the motion of a material point on a rotating sphere with dry friction (the case of the vertical axis)
%J Russian journal of nonlinear dynamics
%D 2016
%P 369-383
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_3_a5/
%G ru
%F ND_2016_12_3_a5
E. S. Shalimova. On the motion of a material point on a rotating sphere with dry friction (the case of the vertical axis). Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 369-383. http://geodesic.mathdoc.fr/item/ND_2016_12_3_a5/

[1] Barbashin E. A., Tabueva V. A., “Pendulum oscillations with dry friction”, Izv. Vyssh. Uchebn. Zaved. Matem., 1959, no. 5, 48–57 (Russian)

[2] Burov A. A., Yakushev I. A., “Bifurcations of the relative equilibria of a heavy bead on a rotating hoop with dry friction”, J. Appl. Math. Mech., 78:5 (2014), 460–467

[3] Ivanov A. P., “The equilibrium of systems with dry friction”, J. Appl. Math. Mech., 79:3 (2015), 217–228

[4] Ivanov A. P., “On the stability of equilibrium in systems with friction”, J. Appl. Math. Mech., 71:3 (2007), 385–395 | Zbl

[5] Ivanov A. P., Fundamentals of the theory of systems with friction, R Dynamics, Institute of Computer Science, Izhevsk, 2011 (Russian)

[6] Ivanov A. P., “Bifurcations in systems with friction: Basic models and methods”, Nelin. Dinam., 5:4 (2009), 479–498 (Russian)

[7] Karapetyan A. V., The stability of steady motions, Editorial URSS, Moscow, 1998 (Russian)

[8] Karapetyan A. V., Stepanov S. Ya., “On steady motions and relative equilibria of mechanical systems with symmetry”, J. Appl. Math. Mech., 60:5 (1996), 729–735 | Zbl

[9] Krementulo V. V., “Investigation of the stability of a gyroscope taking into account the dry friction on the axis of the inner cardan ring (gimbal)”, J. Appl. Math. Mech., 23:5 (1959), 1382–1386 | Zbl

[10] Krementulo V. V., “Stability of a gyroscope having a vertical axis of the outer ring with dry friction in the gimbal axes taken into account”, J. Appl. Math. Mech., 24:3 (1960), 843–849 | Zbl

[11] Mandelstam L. I., Collected works, v. 4, Lectures on oscillations (1930–1932), AN SSSR, Moscow, 1955 (Russian)

[12] Matrosov V. M., Finogenko I. A., “On attraction for autonomous mechanical systems with sliding friction”, J. Appl. Math. Mech., 62:1 (1998), 95–102 | Zbl

[13] Matrosov V. M., Finogenko I. A., “The stability of the set of equilibrium positions of autonomous mechanical systems with sliding friction”, J. Appl. Math. Mech., 62:6 (1998), 863–871

[14] Pozharitskii G. K., “On the stability of equilibrium states for systems with dry friction”, J. Appl. Math. Mech., 26:1 (1962), 3–16

[15] Stepanov S. Ya., “Symmetrization of the sign-definiteness criteria of symmetrical quadratic forms”, J. Appl. Math. Mech., 66:6 (2002), 933–941 | Zbl

[16] Strelkov S. P., “The Froude pendulum”, Zh. Tekh. Fiz., 3:4 (1933), 563–568 (Russian)

[17] Sumbatov A. S., “On the Poshekhonov pendulum”, J. Appl. Math. Mech., 60:3 (1996), 407–411 | MR | Zbl

[18] Teufel A., Steindl A., Troger H., “Classification of non-smooth bifurcations for friction oscillator”, Problems of analytical mechanics and stability theory, eds. V. V. Kozlov et al., Fizmatlit, Moscow, 2009, 161–175 (Russian)

[19] Tabueva V. A., “Existence conditions for circular motions of the Froude pendulum”, Izv. Vyssh. Uchebn. Zaved. Mat., 1961, no. 5, 61–68 (Russian) | MR

[20] Akpolat Z. H., Asher G. M., Clare J. C., “Dynamic emulation of mechanical loads using a vector-controlled induction motor–generator set”, IEEE Trans. Ind. Electron., 46:2 (1999), 370–379 | DOI

[21] Biemond J. J. B., van de Wouw N., Nijmeijer H., “Bifurcations of equilibrium sets in mechanical systems with dry friction”, Phys. D, 241:22 (2012), 1882–1894 | DOI | MR

[22] Burov A. A., “On bifurcations of relative equilibria of a heavy bead sliding with dry friction on a rotating circle”, Acta Mech., 212:3–4 (2010), 349–354 | DOI

[23] Burov A. A., Shalimova E. S., “On the motion of a heavy material point on a rotating sphere (dry friction case)”, Regul. Chaotic Dyn., 20:3 (2015), 225–233 | DOI | MR

[24] Goeleven D., Brogliato B., “Necessary conditions of asymptotic stability for unilateral dynamical systems”, Nonlinear Anal., 61:6 (2005), 961–1004 | DOI | MR

[25] Joshi P., Nigam K. D. P., Nauman E. B., “The Kenics static mixer: New data and proposed correlations”, Chem. Eng. J. Bioch. Eng., 59:3 (1995), 265–271 | DOI

[26] Leine R. I., “Bifurcations of equilibria in non-smooth continuous systems”, Phys. D, 223:1 (2006), 121–137 | DOI | MR

[27] Leine R. I., van Campen D. H., “Bifurcation phenomena in non-smooth dynamical systems”, Eur. J. Mech. A Solids, 25:4 (2006), 595–616 | DOI | MR

[28] Leine R. I., van de Wouw N., Stability and convergence of mechanical systems with unilateral constraints, Lect. Notes Appl. Comput. Mech., 36, Springer, Berlin, 2008, 236 pp. | DOI | MR

[29] Leine R. I., van de Wouw N., “Stability properties of equilibrium sets of nonlinear mechanical systems with dry friction and impact”, Nonlinear Dynam., 51:4 (2008), 551–583 | DOI | MR

[30] van de Wouw N., Leine R. I., “Stability of stationary sets in nonlinear systems with set-valued friction”, Proc. of the 45th IEEE Conf. Decision and Control and European Control Conf. (CDC'2006, San Diego, USA, 2006), 3765–3770

[31] van de Wouw N., van den Heuvel M. N., Nijmeijer H., van Rooij J. A., “Performance of an automatic ball balancer with dry friction”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15:1 (2005), 65–82 | DOI | MR