On an integrable system on the plane with velocity-dependent potential
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 355-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss an algorithmic construction of the auto Bäcklund transformations of Hamilton–Jacobi equations and possible applications of this algorithm to finding new integrable systems with integrals of motion of higher order in momenta. We explicitly present Bäcklund transformations for two Hamiltonian systems on the plane separable in parabolic and elliptic coordinates.
Keywords: integrable systems, separation of variables, velocity-dependent potentials.
@article{ND_2016_12_3_a4,
     author = {Yu. A. Grigor'ev and A. P. Sozonov and A. V. Tsiganov},
     title = {On an integrable system on the plane with velocity-dependent potential},
     journal = {Russian journal of nonlinear dynamics},
     pages = {355--367},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_3_a4/}
}
TY  - JOUR
AU  - Yu. A. Grigor'ev
AU  - A. P. Sozonov
AU  - A. V. Tsiganov
TI  - On an integrable system on the plane with velocity-dependent potential
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 355
EP  - 367
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_3_a4/
LA  - ru
ID  - ND_2016_12_3_a4
ER  - 
%0 Journal Article
%A Yu. A. Grigor'ev
%A A. P. Sozonov
%A A. V. Tsiganov
%T On an integrable system on the plane with velocity-dependent potential
%J Russian journal of nonlinear dynamics
%D 2016
%P 355-367
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_3_a4/
%G ru
%F ND_2016_12_3_a4
Yu. A. Grigor'ev; A. P. Sozonov; A. V. Tsiganov. On an integrable system on the plane with velocity-dependent potential. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 355-367. http://geodesic.mathdoc.fr/item/ND_2016_12_3_a4/

[1] Abel N. H., “Mémoire sure une propriété générale d'une class très éntendue des fonctions transcendantes”, Oeuvres complétes, v. 1, Grondahl, Christiania, 1881, 145–211

[2] Borisov A. V., Mamaev I. S., Modern methods of the theory of integrable systems, Institute of Computer Science, Izhevsk, 2003 (Russian) | MR

[3] Borisov A. V., Mamaev I. S., Dynamics of a rigid body: Hamiltonian methods, integrability, chaos, 2nd ed., R Dynamics, Institute of Computer Science, Izhevsk, 2005 (Russian) | MR

[4] Costello C., Lauter K., “Group law computations on Jacobians of hyperelliptic curves”, Selected areas in cryptography, Lecture Notes in Comput. Sci., 7118, eds. A. Miri, S. Vaudenay, Springer, Heidelberg, 2012, 92–117 | DOI | MR | Zbl

[5] Dorizzi B., Grammaticos B., Ramani A., Winternitz P., “Integrable Hamiltonian systems with velocity-dependent potentials”, J. Math. Phys., 26:12 (1985), 3070–3079 | DOI | MR

[6] Moreno G. A., Barrachina R. O., “A velocity-dependent potential of a rigid body in a rotating frame”, Amer. J. Phys., 78:12 (2008), 1146–1149 | DOI

[7] Pucacco G., “On integrable Hamiltonians with velocity dependent potentials”, Celestial Mech. Dynam. Astronom., 90:1–2 (2004), 111–125 | MR | Zbl

[8] Roekaerts D., Yoshida H., “Non-integrability of homogeneous two-dimensional Hamiltonians with velocity-dependent potential”, J. Phys. A, 21:18 (1988), 3547–3558 | DOI | MR

[9] Sozonov A. P., Tsiganov A. V., “Bäcklund transformations relating different Hamilton – Jacobi equations”, Theoret. and Math. Phys., 183:3 (2015), 768–781 | DOI | DOI | MR | Zbl

[10] Tsiganov A. V., “Simultaneous separation for the Neumann and Chaplygin systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93 | DOI | MR | Zbl

[11] Tsiganov A. V., “On the Chaplygin system on the sphere with velocity dependent potential”, J. Geom. Phys., 92 (2015), 94–99 | DOI | MR | Zbl

[12] Tsiganov A. V., “On auto and hetero Bäcklund transformations for the Hénon – Heiles systems”, Phys. Lett. A, 379:45–46 (2015), 2903–2907 | DOI | MR | Zbl

[13] Tsiganov A. V., “Separation of variables for some generalization of the Chaplygin system on a sphere”, Nelin. Dinam., 11:1 (2015), 179–185 (Russian)

[14] Tsiganov A. V., “On algebraic integrals of Abel differential equations and Bäcklund transformations”, Tr. Mat. Inst. Steklova, 2016