Noise-induced large amplitude oscillations in the Morris–Lecar neuron model with class 1 excitability
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 327-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Morris–Lecar neuron model with a parameter set corresponding to class 1 excitability. We study the effect of random disturbances on the model in the parametric zone where the only attractor of the deterministic system is a stable equilibrium. We show that under noise the stochastic generation of large amplitude oscillations occurs in the system. This phenomenon is confirmed by changes in distributions of random trajectories and interspike intervals. This effect is analyzed using the stochastic sensitivity function technique and the method of confidence domains. We suggest a criterion for the estimation of threshold values of noise intensity leading to the stochastic generation of oscillations.
Keywords: Morris–Lecar model, excitability, stochastic generation of large amplitude oscillations, stochastic sensitivity
Mots-clés : bifurcations.
@article{ND_2016_12_3_a2,
     author = {E. S. Slepukhina},
     title = {Noise-induced large amplitude oscillations in the {Morris{\textendash}Lecar} neuron model with class 1 excitability},
     journal = {Russian journal of nonlinear dynamics},
     pages = {327--340},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_3_a2/}
}
TY  - JOUR
AU  - E. S. Slepukhina
TI  - Noise-induced large amplitude oscillations in the Morris–Lecar neuron model with class 1 excitability
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 327
EP  - 340
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_3_a2/
LA  - ru
ID  - ND_2016_12_3_a2
ER  - 
%0 Journal Article
%A E. S. Slepukhina
%T Noise-induced large amplitude oscillations in the Morris–Lecar neuron model with class 1 excitability
%J Russian journal of nonlinear dynamics
%D 2016
%P 327-340
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_3_a2/
%G ru
%F ND_2016_12_3_a2
E. S. Slepukhina. Noise-induced large amplitude oscillations in the Morris–Lecar neuron model with class 1 excitability. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 327-340. http://geodesic.mathdoc.fr/item/ND_2016_12_3_a2/

[1] Bashkirtseva I. A., Ryashko L. B., “Quasipotential method in the study of local stability of limit cycles to random perturbations”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 9:6 (2001), 104–113 (Russian)

[2] Ventsel'S A. D., Freidlin M. I., Fluctuations in dynamical systems under the action of small random perturbations, Nauka, Moscow, 1979 (Russian)

[3] Gardiner C., Stochastic methods: A handbook for the natural and social sciences, Springer Series in Synergetics, 13, 4th ed., Springer, Berlin, 2009, XVIII, 447 pp. | MR | MR

[4] Gihman I. I., Skorohod A. V., Stochastic differential equations, Ergeb. Math. Grenzgeb. (2), 72, Springer, Berlin, 1972, VIII, 356 pp. | MR | MR | Zbl

[5] Mil'shtein G. N., Ryashko L. B., “A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations”, J. Appl. Math. Mech., 59:1 (1995), 47–56 | DOI | MR

[6] Bashkirtseva I., Ryashko L., “Analysis of excitability for the FitzHugh – Nagumo model via a stochastic sensitivity function technique”, Phys. Rev. E, 83:6 (2011), 061109, 8 pp. | DOI | MR

[7] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity of $3$D-cycles”, Math. Comput. Simulation, 66:1 (2004), 55–67 | DOI | MR | Zbl

[8] Dembo A., Zeitouni O., Large deviations techniques and applications, Appl. of Math. (New York), 38, 2nd ed., Springer, New York, 1998, 396 pp. | MR | Zbl

[9] Ditlevsen S., Greenwood P., “The Morris – Lecar neuron model embeds a leaky integrate-and-fire model”, J. Math. Biol., 67:2 (2013), 239–259 | DOI | MR | Zbl

[10] Ditlevsen S., Samson A., “Estimation in the partially observed stochastic Morris – Lecar neuronal model with particle filter and stochastic approximation methods”, Ann. Appl. Stat., 8:2 (2014), 674–702 | DOI | MR | Zbl

[11] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI

[12] Hodgkin A. L., “The local electric changes associated with repetitive action in a non-medullated axon”, J. Physiol., 107:2 (1948), 165–181 | DOI

[13] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI

[14] Izhikevich E. M., Dynamical systems in neuroscience: The geometry of excitability and bursting, MIT Press, Cambridge, Mass., 2007, 521 pp. | MR

[15] Izhikevich E. M., “Neural excitability, spiking and bursting”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:6 (2000), 1171–1266 | DOI | MR | Zbl

[16] Jia B., Gu H.-G., Li Y.-Y., “Coherence-resonance-induced neuronal firing near a saddle-node and homoclinic bifurcation corresponding to type-I excitability”, Chinese Phys. Lett., 28:9 (2011), 090507, 4 pp. | DOI

[17] Jia B., Gu H.-G., “Identifying type I excitability using dynamics of stochastic neural firing patterns”, Cogn. Neurodyn., 6:6 (2012), 485–497 | DOI

[18] Kurrer C., Schulten K., “Effect of noise and perturbations on limit cycle systems”, Phys. D, 50:3 (1991), 311–320 | DOI | MR | Zbl

[19] Lacasta A. M., Sagués F., Sancho J. M., “Coherence and anticoherence resonance tuned by noise”, Phys. Rev. E, 66:4 (2002), 045105(R), 4 pp. | DOI | MR

[20] Lindner B., García-Ojalvo J., Neiman A., Schimansky-Geier L., “Effects of noise in excitable systems”, Phys. Rep., 392:6 (2004), 321–424 | DOI

[21] Lindner B., Schimansky-Geier L., “Analytical approach to the stochastic FitzHugh – Nagumo system and coherence resonance”, Phys. Rev. E, 60:6 (1999), 7270–7276 | DOI

[22] Liu C., Liu X., Liu Sh., “Bifurcation analysis of a Morris – Lecar neuron model”, Biol. Cybernet., 108:1 (2014), 75–84 | DOI | MR

[23] Llinás R. R., “Intrinsic electrical properties of mammalian neurons and CNS function: A historical perspective”, Front. Cell. Neurosci., 8 (2014), 320–323

[24] Ly C., Ermentrout G. B., “Analytic approximations of statistical quantities and response of noisy oscillators”, Phys. D, 240:8 (2011), 719–731 | DOI | Zbl

[25] Morris C., Lecar H., “Voltage oscillations in the Barnacle giant muscle fiber”, Biophys. J., 35:1 (1981), 193–213 | DOI

[26] Newby J. M., “Spontaneous excitability in the Morris – Lecar model with ion channel noise”, SIAM J. Appl. Dyn. Syst., 13:4 (2014), 1756–1791 | DOI | MR | Zbl

[27] Pikovsky A. S., Kurths J., “Coherence resonance in a noise-driven excitable system”, Phys. Rev. Lett., 78:5 (1997), 775–778 | DOI | MR | Zbl

[28] Rinzel J., Ermentrout G. B., “Analysis of neural excitability and oscillations”, Methods in neuronal modeling: From synapses to networks, eds. Ch. Koch, I. Segev, MIT Press, Cambridge, Mass., 1989, 135–169

[29] Tateno T., Pakdaman K., “Random dynamics of the Morris – Lecar neural model”, Chaos, 14:3 (2004), 511–530 | DOI | MR | Zbl

[30] Tsumoto K., Kitajima H., Yoshinaga Y., Aihara K., Kawakami H., “Bifurcations in Morris – Lecar neuron model”, Neurocomputing, 69:4–6 (2006), 293–316 | DOI