Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_3_a2, author = {E. S. Slepukhina}, title = {Noise-induced large amplitude oscillations in the {Morris{\textendash}Lecar} neuron model with class 1 excitability}, journal = {Russian journal of nonlinear dynamics}, pages = {327--340}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_3_a2/} }
TY - JOUR AU - E. S. Slepukhina TI - Noise-induced large amplitude oscillations in the Morris–Lecar neuron model with class 1 excitability JO - Russian journal of nonlinear dynamics PY - 2016 SP - 327 EP - 340 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_3_a2/ LA - ru ID - ND_2016_12_3_a2 ER -
%0 Journal Article %A E. S. Slepukhina %T Noise-induced large amplitude oscillations in the Morris–Lecar neuron model with class 1 excitability %J Russian journal of nonlinear dynamics %D 2016 %P 327-340 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2016_12_3_a2/ %G ru %F ND_2016_12_3_a2
E. S. Slepukhina. Noise-induced large amplitude oscillations in the Morris–Lecar neuron model with class 1 excitability. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 327-340. http://geodesic.mathdoc.fr/item/ND_2016_12_3_a2/
[1] Bashkirtseva I. A., Ryashko L. B., “Quasipotential method in the study of local stability of limit cycles to random perturbations”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 9:6 (2001), 104–113 (Russian)
[2] Ventsel'S A. D., Freidlin M. I., Fluctuations in dynamical systems under the action of small random perturbations, Nauka, Moscow, 1979 (Russian)
[3] Gardiner C., Stochastic methods: A handbook for the natural and social sciences, Springer Series in Synergetics, 13, 4th ed., Springer, Berlin, 2009, XVIII, 447 pp. | MR | MR
[4] Gihman I. I., Skorohod A. V., Stochastic differential equations, Ergeb. Math. Grenzgeb. (2), 72, Springer, Berlin, 1972, VIII, 356 pp. | MR | MR | Zbl
[5] Mil'shtein G. N., Ryashko L. B., “A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations”, J. Appl. Math. Mech., 59:1 (1995), 47–56 | DOI | MR
[6] Bashkirtseva I., Ryashko L., “Analysis of excitability for the FitzHugh – Nagumo model via a stochastic sensitivity function technique”, Phys. Rev. E, 83:6 (2011), 061109, 8 pp. | DOI | MR
[7] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity of $3$D-cycles”, Math. Comput. Simulation, 66:1 (2004), 55–67 | DOI | MR | Zbl
[8] Dembo A., Zeitouni O., Large deviations techniques and applications, Appl. of Math. (New York), 38, 2nd ed., Springer, New York, 1998, 396 pp. | MR | Zbl
[9] Ditlevsen S., Greenwood P., “The Morris – Lecar neuron model embeds a leaky integrate-and-fire model”, J. Math. Biol., 67:2 (2013), 239–259 | DOI | MR | Zbl
[10] Ditlevsen S., Samson A., “Estimation in the partially observed stochastic Morris – Lecar neuronal model with particle filter and stochastic approximation methods”, Ann. Appl. Stat., 8:2 (2014), 674–702 | DOI | MR | Zbl
[11] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI
[12] Hodgkin A. L., “The local electric changes associated with repetitive action in a non-medullated axon”, J. Physiol., 107:2 (1948), 165–181 | DOI
[13] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI
[14] Izhikevich E. M., Dynamical systems in neuroscience: The geometry of excitability and bursting, MIT Press, Cambridge, Mass., 2007, 521 pp. | MR
[15] Izhikevich E. M., “Neural excitability, spiking and bursting”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:6 (2000), 1171–1266 | DOI | MR | Zbl
[16] Jia B., Gu H.-G., Li Y.-Y., “Coherence-resonance-induced neuronal firing near a saddle-node and homoclinic bifurcation corresponding to type-I excitability”, Chinese Phys. Lett., 28:9 (2011), 090507, 4 pp. | DOI
[17] Jia B., Gu H.-G., “Identifying type I excitability using dynamics of stochastic neural firing patterns”, Cogn. Neurodyn., 6:6 (2012), 485–497 | DOI
[18] Kurrer C., Schulten K., “Effect of noise and perturbations on limit cycle systems”, Phys. D, 50:3 (1991), 311–320 | DOI | MR | Zbl
[19] Lacasta A. M., Sagués F., Sancho J. M., “Coherence and anticoherence resonance tuned by noise”, Phys. Rev. E, 66:4 (2002), 045105(R), 4 pp. | DOI | MR
[20] Lindner B., García-Ojalvo J., Neiman A., Schimansky-Geier L., “Effects of noise in excitable systems”, Phys. Rep., 392:6 (2004), 321–424 | DOI
[21] Lindner B., Schimansky-Geier L., “Analytical approach to the stochastic FitzHugh – Nagumo system and coherence resonance”, Phys. Rev. E, 60:6 (1999), 7270–7276 | DOI
[22] Liu C., Liu X., Liu Sh., “Bifurcation analysis of a Morris – Lecar neuron model”, Biol. Cybernet., 108:1 (2014), 75–84 | DOI | MR
[23] Llinás R. R., “Intrinsic electrical properties of mammalian neurons and CNS function: A historical perspective”, Front. Cell. Neurosci., 8 (2014), 320–323
[24] Ly C., Ermentrout G. B., “Analytic approximations of statistical quantities and response of noisy oscillators”, Phys. D, 240:8 (2011), 719–731 | DOI | Zbl
[25] Morris C., Lecar H., “Voltage oscillations in the Barnacle giant muscle fiber”, Biophys. J., 35:1 (1981), 193–213 | DOI
[26] Newby J. M., “Spontaneous excitability in the Morris – Lecar model with ion channel noise”, SIAM J. Appl. Dyn. Syst., 13:4 (2014), 1756–1791 | DOI | MR | Zbl
[27] Pikovsky A. S., Kurths J., “Coherence resonance in a noise-driven excitable system”, Phys. Rev. Lett., 78:5 (1997), 775–778 | DOI | MR | Zbl
[28] Rinzel J., Ermentrout G. B., “Analysis of neural excitability and oscillations”, Methods in neuronal modeling: From synapses to networks, eds. Ch. Koch, I. Segev, MIT Press, Cambridge, Mass., 1989, 135–169
[29] Tateno T., Pakdaman K., “Random dynamics of the Morris – Lecar neural model”, Chaos, 14:3 (2004), 511–530 | DOI | MR | Zbl
[30] Tsumoto K., Kitajima H., Yoshinaga Y., Aihara K., Kawakami H., “Bifurcations in Morris – Lecar neuron model”, Neurocomputing, 69:4–6 (2006), 293–316 | DOI