Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_3_a1, author = {I. P. Koroleva (Kikot) and L. I. Manevich}, title = {Oscillatory chain with elastic supports and bending stiffness under conditions close to acoustic vacuum}, journal = {Russian journal of nonlinear dynamics}, pages = {311--325}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_3_a1/} }
TY - JOUR AU - I. P. Koroleva (Kikot) AU - L. I. Manevich TI - Oscillatory chain with elastic supports and bending stiffness under conditions close to acoustic vacuum JO - Russian journal of nonlinear dynamics PY - 2016 SP - 311 EP - 325 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_3_a1/ LA - ru ID - ND_2016_12_3_a1 ER -
%0 Journal Article %A I. P. Koroleva (Kikot) %A L. I. Manevich %T Oscillatory chain with elastic supports and bending stiffness under conditions close to acoustic vacuum %J Russian journal of nonlinear dynamics %D 2016 %P 311-325 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2016_12_3_a1/ %G ru %F ND_2016_12_3_a1
I. P. Koroleva (Kikot); L. I. Manevich. Oscillatory chain with elastic supports and bending stiffness under conditions close to acoustic vacuum. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 311-325. http://geodesic.mathdoc.fr/item/ND_2016_12_3_a1/
[1] Manevitch L. I., Gourdon E. E., Lamarque C. H., “Towards the design of an optimal energetic sink in a strongly inhomogeneous two-degree-of-freedom system”, ASME. J. Appl. Mech., 74:6 (2006), 1078–1086 | DOI
[2] Vakakis A. F., Gendelman O. V., Bergman L. A., McFarland D. M., Kerschen G., Lee Y. S., Nonlinear targeted energy transfer in mechanical and structural systems, Solid mechanics and its applications, 156, Springer, Dordrecht, 2009, 1030 pp.
[3] Manevitch L. I., “New approach to beating phenomenon in coupled nonlinear oscillatory chains”, Arch. Appl. Mech., 77:5 (2007), 301–312 | DOI | Zbl
[4] Manevitch L. I., Kovaleva A. S., Manevitch E. L., “Limiting phase trajectories and resonance energy transfer in a system of two coupled oscillators”, Math. Probl. Eng., 2010 (2010), 760479, 24 pp. | DOI | MR | Zbl
[5] Manevitch L. I., Kovaleva A. S., Shepelev D. S., “Non-smooth approximations of the limiting phase trajectories for the Duffing oscillator near $1:1$ resonance”, Phys. D, 240:1 (2011), 1–12 | DOI | MR | Zbl
[6] Kovaleva A. S., Manevitch L. I., “Resonance energy transport and exchange in oscillator arrays”, Phys. Rev. E, 88:2 (2013), 022904, 10 pp. | DOI | MR
[7] Kovaleva M. A., Manevich L. I., Pilipchuk V. N., “New type of synchronization of oscillators with hard excitation”, J. Exp. Theor. Phys., 117:2 (2013), 369–377 | DOI
[8] Manevitch L. I., Kovaleva M. A., Pilipchuk V. N., “Non-conventional synchronization of weakly coupled active oscillators”, Europhys. Lett., 101:5 (2013), 50002, 5 pp. | DOI
[9] Manevitch L. I., Vakakis A. F., “Nonlinear oscillatory acoustic vacuum”, SIAM J. Appl. Math., 74:6 (2014), 1742–1762 | DOI | MR | Zbl
[10] Koroleva (Kikot) I. P., Manevich L. I., “Weakly coupled oscillators in the presence of elactic support in the conditions of acoustic vacuum”, Nelin. Dinam., 10:3 (2014), 245–263 (Russian)
[11] Silina K. G., Kikot I. P., Manevitch L. I., “Energy exchange and localization in the planar motion of a weightless beam carrying two discrete masses”, Regul. Chaotic Dyn., 20:2 (2015), 109–122 | DOI | MR | Zbl
[12] Starosvetsky Y., Ben-Meir Y., “Nonstationary regimes of homogeneous hamiltonian systems in the state of sonic vacuum”, Phys. Rev. E, 87:6 (2013), 062919, 18 pp. | DOI