Coherence-incoherence transition with appearance of chimera states in a one-dimensional ensemble
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 295-309.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the dynamics of a ring of nonlocally coupled logistic maps when varying the coupling coefficient. We introduce the coupling function, which characterizes the impact of nonlocal neighbors and study its dynamics together with the dynamics of the whole ensemble. Conditions for the transition from complete chaotic synchronization to partial one are analyzed and the corresponding theoretical estimation of the bifurcation parameter $\sigma$ is given. Conditions for the appearance of phase and amplitude chimera states are also studied.
Keywords: chimera states, nonlocal coupling, chaotic synchronization, desynchronization
Mots-clés : one-dimensional ensemble.
@article{ND_2016_12_3_a0,
     author = {N. I. Semenova and V. S. Anishchenko},
     title = {Coherence-incoherence transition with appearance of chimera states in a one-dimensional ensemble},
     journal = {Russian journal of nonlinear dynamics},
     pages = {295--309},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_3_a0/}
}
TY  - JOUR
AU  - N. I. Semenova
AU  - V. S. Anishchenko
TI  - Coherence-incoherence transition with appearance of chimera states in a one-dimensional ensemble
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 295
EP  - 309
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_3_a0/
LA  - ru
ID  - ND_2016_12_3_a0
ER  - 
%0 Journal Article
%A N. I. Semenova
%A V. S. Anishchenko
%T Coherence-incoherence transition with appearance of chimera states in a one-dimensional ensemble
%J Russian journal of nonlinear dynamics
%D 2016
%P 295-309
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_3_a0/
%G ru
%F ND_2016_12_3_a0
N. I. Semenova; V. S. Anishchenko. Coherence-incoherence transition with appearance of chimera states in a one-dimensional ensemble. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 295-309. http://geodesic.mathdoc.fr/item/ND_2016_12_3_a0/

[1] Jensen M. H., Bak P., “Spatial chaos”, Phys. Scripta, 1985:T9 (1985), 64 pp.

[2] Kuznetsov S. P., Pikovsky A. S., “Universality and scaling of period-doubling bifurcations in a dissipative distributed medium”, Phys. D, 19:3 (1986), 384–396 | DOI | MR | Zbl

[3] Kuznetsov A. P., Kuznetsov S. P., “Spatial structures in dissipative media at the threshold of chaos”, Radiophys. Quantum El., 34:2 (1991), 124–128 | DOI

[4] Kuznetsov A. P., Kuznetsov S. P., “Critical dynamics of coupled map lattices at the onset of chaos”, Radiophys. Quantum El., 34:10–12 (1991), 845–868 | MR

[5] Kaneko K., Tsuda I., Complex systems: Chaos and beyond: A constructive approach with applications in life sciences, Springer, Berlin, 2001, 274 pp. | Zbl

[6] Fernandez B., Luna B., Ugalde E., “Spatial chaos of traveling waves has a given velocity”, Phys. Rev. E, 80:2 (2009), 025203(R), 4 pp. | DOI

[7] Chow Sh.-N., Mallet-Paret J., “Pattern formation and spatial chaos in lattice dynamical systems: 1”, IEEE Trans. Circuits Systems 1 Fund. Theory Appl., 42:10 (1995), 746–751 | DOI | MR

[8] Afraimovich V., “Some topological properties of lattice dynamical systems”, Dynamics of coupled map lattices and of related spatially extended systems, Lecture Notes in Phys., 671, eds. J.-R. Chazottes, B. Fernandez, Springer, Berlin, 2005, 153–179 | DOI | MR

[9] Nizhnik L. P., Nizhnik I. L., Hasler M., “Stable stationary solutions in reaction-diffusion systems consisting of a $1$-D array of bistable cells”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12:2 (2002), 261–279 | DOI | MR | Zbl

[10] Panaggio M. J., Abrams D. M., “Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators”, Nonlinearity, 28:3 (2015), R67–R87 | DOI | MR | Zbl

[11] Kuramoto Y., Battogtokh D., “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators”, Nonl. Phen. Compl. Sys., 5:4 (2002), 380–385

[12] Abrams D. M., Strogatz S. H., “Chimera states for coupled oscillators”, Phys. Rev. Lett., 93:17 (2004), 174102, 4 pp. | DOI

[13] Omel'chenko O., Maistrenko Y., Tass P. A., “Chimera states: The natural link between coherence and incoherence”, Phys. Rev. Lett., 100:4 (2008), 044105, 4 pp. | DOI

[14] Semenova N., Zakharova A., Schöll E., Anishchenko V., “Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators?”, Europhys. Lett., 112:4 (2015), 40002, 6 pp. | DOI | MR

[15] Omel'chenko O., Wolfrum M., Maistrenko Yu., “Chimera states as chaotic spatiotemporal patterns”, Phys. Rev. E, 81:6 (2010), 065201(R), 4 pp. | DOI | MR

[16] Omelchenko I., Maistrenko Yu., Hövel Ph., Schöll E., “Loss of coherence in dynamical networks: Spatial chaos and chimera states”, Phys. Rev. Lett., 106:23 (2011), 234102, 4 pp. | DOI

[17] Omelchenko I., Riemenschneider B., Hövel Ph., Maistrenko Yu., Schöll E., “Transition from spatial coherence to incoherence in coupled chaotic systems”, Phys. Rev. E, 85:2 (2012), 026212, 9 pp. | DOI | MR

[18] Omelchenko I., Provata A., Hizanidis J., Schöll E., Hövel Ph., “Robustness of chimera states for coupled FitzHugh – Nagumo oscillators”, Phys. Rev. E, 91:2 (2015), 022917, 13 pp. | DOI | MR

[19] Bastidas V. M., Omelchenko I., Zakharova A., Schöll E., Brandes T., “Quantum signatures of chimera states”, Phys. Rev. E, 92:6 (2015), 062924, 5 pp. | DOI | MR

[20] Hizanidis J., Panagakou E., Omelchenko I., Schöll E., Hövel Ph., Provata A., “Chimera states in population dynamics: Networks with fragmented and hierarchical connectivities”, Phys. Rev. E, 92:1 (2015), 012915, 11 pp. | DOI | MR

[21] Rosin D. P., Rontani D., Gauthier D. J., “Synchronization of coupled Boolean phase oscillators”, Phys. Rev. E, 89:4 (2014), 042907, 7 pp. | DOI

[22] Panaggio M. J., Abrams D. M., “Chimera states on a flat torus”, Phys. Rev. Lett., 110:9 (2013), 094102, 5 pp. | DOI

[23] Vanag V. K., Epstein I. R., “Pattern formation in a tunable medium: The Belousov – Zhabotinsky reaction in an aerosol OT microemulsion”, Phys. Rev. Lett., 87:22 (2001), 228301, 4 pp. | DOI

[24] Tinsley M. R., Nkomo S., Showalter K., “Chimera and phase-cluster states in populations of coupled chemical oscillators”, Nature Phys., 8:9 (2012), 662–665 | DOI

[25] Rogister F., Roy R., “Localized excitations in arrays of synchronized laser oscillators”, Phys. Rev. Lett., 98:10 (2007), 104101, 4 pp. | DOI

[26] Böhm F., Zakharova A., Schöll E., Lüdge K., “Amplitude-phase coupling drives chimera states in globally coupled laser networks”, Phys. Rev. E, 91:4 (2015), 040901, 6 pp. | DOI

[27] Bogomolov S. A., Strelkova G. I., Schöll E., Anishchenko V. S., “Amplitude and phase chimeras in an ensemble of chaotic oscillators”, Tech. Phys. Lett., 42:7 (2016), 765–768 | DOI

[28] Bogomolov S., Slepnev A., Strelkova G., Schöll E., Anishchenko V., “Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems”, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 25–36 | DOI | MR