Physically oriented simulation of the omnivehicle dynamics
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 251-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

The omniwheel is defined as a wheel having rollers along its rim. Accordingly, the omnivehicle is a vehicle equipped with omniwheels. Several steps of development of the dynamical model of the omni vehicle multibody system are implemented. Initially, the dynamics of the free roller moving in a field of gravity and having a unilateral rigid contact constraint with a horizontal surface is modeled. It turned out that a simplified and efficient algorithm for contact tracking is possible. On the next stage the omniwheel model is implemented. After that the whole vehicle model is assembled as a container class having arrays of objects as instantiated classes/models of omniwheels and joints. The dynamical properties of the resulting model are illustrated via numerical experiments.
Keywords: omniwheel, contact tracking algorithm, unilateral constraint, contact detection, friction model, object-oriented modeling.
@article{ND_2016_12_2_a6,
     author = {I. I. Kosenko and K. V. Gerasimov},
     title = {Physically oriented simulation of the omnivehicle dynamics},
     journal = {Russian journal of nonlinear dynamics},
     pages = {251--262},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_2_a6/}
}
TY  - JOUR
AU  - I. I. Kosenko
AU  - K. V. Gerasimov
TI  - Physically oriented simulation of the omnivehicle dynamics
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 251
EP  - 262
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_2_a6/
LA  - ru
ID  - ND_2016_12_2_a6
ER  - 
%0 Journal Article
%A I. I. Kosenko
%A K. V. Gerasimov
%T Physically oriented simulation of the omnivehicle dynamics
%J Russian journal of nonlinear dynamics
%D 2016
%P 251-262
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_2_a6/
%G ru
%F ND_2016_12_2_a6
I. I. Kosenko; K. V. Gerasimov. Physically oriented simulation of the omnivehicle dynamics. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 251-262. http://geodesic.mathdoc.fr/item/ND_2016_12_2_a6/

[1] Borisov A. V., Kilin A. A., Mamaev I. S., “An omni-wheel vehicle on a plane and a sphere”, Nelin. Dinam., 7:4 (2011), 785–801 (Russian)

[2] Zobova A. A., Tatarinov Ya. V., “The dynamics of an omni-mobile vehicle”, J. Appl. Math. Mech., 73:1 (2009), 8–15 | DOI | MR | Zbl

[3] Kosenko I. I., “Integration of the equations of a rotational motion of a rigid body in quaternion algebra: The Euler case”, J. Appl. Math. Mech., 62:2 (1998), 193–200 | DOI | MR | Zbl

[4] Kosenko I. I., “Implementation of computer model for the unilateral multibody systems dynamics”, Matem. Mod., 18:12 (2006), 95–106 (Russian) | MR | Zbl

[5] Kosenko I. I., Aleksandrov E. B., “Implementation of the Contensou – Erismann model for tangent forces in the Hertz contact problem”, Nelin. Dinam., 5:4 (2009), 499–517 (Russian)

[6] Kosenko I. I., Gusev I. K., “Computer model of the spur involute gear mesh dynamics in gearboxes”, Nelin. Dinam., 8:4 (2012), 713–734 (Russian)

[7] I. I. Kosenko (ed.), Modelling and virtual prototyping: Tutorial, Alpha-M, INFRA-M, Moscow, 2012 (Russian)

[8] Novozhilov I. V., Fractional analysis: Methods of motion decomposition, Birkhäuser, Basel, 1997, x+232 pp. | MR | Zbl

[9] Kampion G., Basten Zh., D'Andrea-Novel B., “Strukturnye svoistva i klassifikatsiya kinematicheskikh i dinamicheskikh modelei kolesnykh mobilnykh robotov”, Nelineinaya dinamika, 7:4 (2011), 733–769 ; Campion G., Bastin G., d'Andréa-Novel B., “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots”, IEEE Trans. Robot. Autom., 12:1 (1996), 47–62 | DOI | MR

[10] Fritzson P., Principles of object-oriented modeling and simulation with Modelica 2.1, IEEE Press, Piscataway, N.J., 2004, 898 pp.

[11] Kálmán V., “Controlled braking for omnidirectional wheels”, Int. J. Control Sci. Eng., 3:2 (2013), 48–57

[12] Kosenko I. I., “Physically oriented approach to construct multibody system dynamics models using Modelica language”, Multibody Dynamics 2007: An ECCOMAS Thematic Conference (Politecnico di Milano, Milano, Italy, June 25–28, 2007), 20 pp.

[13] Tobolář J., Herrmann F., Bünte T., “Object-oriented modelling and control of vehicles with omni-directional wheels”, Computational Mechanics 2009 (Hrad Nečtiny, Czech Republic, November 9–11, 2009), 2 pp.