Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_2_a6, author = {I. I. Kosenko and K. V. Gerasimov}, title = {Physically oriented simulation of the omnivehicle dynamics}, journal = {Russian journal of nonlinear dynamics}, pages = {251--262}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_2_a6/} }
TY - JOUR AU - I. I. Kosenko AU - K. V. Gerasimov TI - Physically oriented simulation of the omnivehicle dynamics JO - Russian journal of nonlinear dynamics PY - 2016 SP - 251 EP - 262 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_2_a6/ LA - ru ID - ND_2016_12_2_a6 ER -
I. I. Kosenko; K. V. Gerasimov. Physically oriented simulation of the omnivehicle dynamics. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 251-262. http://geodesic.mathdoc.fr/item/ND_2016_12_2_a6/
[1] Borisov A. V., Kilin A. A., Mamaev I. S., “An omni-wheel vehicle on a plane and a sphere”, Nelin. Dinam., 7:4 (2011), 785–801 (Russian)
[2] Zobova A. A., Tatarinov Ya. V., “The dynamics of an omni-mobile vehicle”, J. Appl. Math. Mech., 73:1 (2009), 8–15 | DOI | MR | Zbl
[3] Kosenko I. I., “Integration of the equations of a rotational motion of a rigid body in quaternion algebra: The Euler case”, J. Appl. Math. Mech., 62:2 (1998), 193–200 | DOI | MR | Zbl
[4] Kosenko I. I., “Implementation of computer model for the unilateral multibody systems dynamics”, Matem. Mod., 18:12 (2006), 95–106 (Russian) | MR | Zbl
[5] Kosenko I. I., Aleksandrov E. B., “Implementation of the Contensou – Erismann model for tangent forces in the Hertz contact problem”, Nelin. Dinam., 5:4 (2009), 499–517 (Russian)
[6] Kosenko I. I., Gusev I. K., “Computer model of the spur involute gear mesh dynamics in gearboxes”, Nelin. Dinam., 8:4 (2012), 713–734 (Russian)
[7] I. I. Kosenko (ed.), Modelling and virtual prototyping: Tutorial, Alpha-M, INFRA-M, Moscow, 2012 (Russian)
[8] Novozhilov I. V., Fractional analysis: Methods of motion decomposition, Birkhäuser, Basel, 1997, x+232 pp. | MR | Zbl
[9] Kampion G., Basten Zh., D'Andrea-Novel B., “Strukturnye svoistva i klassifikatsiya kinematicheskikh i dinamicheskikh modelei kolesnykh mobilnykh robotov”, Nelineinaya dinamika, 7:4 (2011), 733–769 ; Campion G., Bastin G., d'Andréa-Novel B., “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots”, IEEE Trans. Robot. Autom., 12:1 (1996), 47–62 | DOI | MR
[10] Fritzson P., Principles of object-oriented modeling and simulation with Modelica 2.1, IEEE Press, Piscataway, N.J., 2004, 898 pp.
[11] Kálmán V., “Controlled braking for omnidirectional wheels”, Int. J. Control Sci. Eng., 3:2 (2013), 48–57
[12] Kosenko I. I., “Physically oriented approach to construct multibody system dynamics models using Modelica language”, Multibody Dynamics 2007: An ECCOMAS Thematic Conference (Politecnico di Milano, Milano, Italy, June 25–28, 2007), 20 pp.
[13] Tobolář J., Herrmann F., Bünte T., “Object-oriented modelling and control of vehicles with omni-directional wheels”, Computational Mechanics 2009 (Hrad Nečtiny, Czech Republic, November 9–11, 2009), 2 pp.