Scenarios of transition to chaos in the nonholonomic model of a Chaplygin top
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 235-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the dynamics in the Suslov problem which describes the motion of a heavy rigid body with a fixed point subject to a nonholonomic constraint, which is expressed by the condition that the projection of angular velocity onto the body-fixed axis is equal to zero. Depending on the system parameters, we find cases of regular (in particular, integrable) motions and, using a new method for constructing charts of Lyapunov exponents, detect different types of chaotic behavior such as conservative chaos, strange attractors and mixed dynamics, which are typical of reversible systems. In the paper we also examine the phenomenon of reversal, which was observed previously in the motion of Celtic stones.
Keywords: nonholonomic model, Chaplygin top, Afraimovich – Shilnikov torus-breakdown, cascade of period-doubling bifurcations, scenario of period doublings of tori, figure-eight attractor.
@article{ND_2016_12_2_a5,
     author = {I. R. Sataev and A. O. Kazakov},
     title = {Scenarios of transition to chaos in the nonholonomic model of a {Chaplygin} top},
     journal = {Russian journal of nonlinear dynamics},
     pages = {235--250},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_2_a5/}
}
TY  - JOUR
AU  - I. R. Sataev
AU  - A. O. Kazakov
TI  - Scenarios of transition to chaos in the nonholonomic model of a Chaplygin top
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 235
EP  - 250
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_2_a5/
LA  - ru
ID  - ND_2016_12_2_a5
ER  - 
%0 Journal Article
%A I. R. Sataev
%A A. O. Kazakov
%T Scenarios of transition to chaos in the nonholonomic model of a Chaplygin top
%J Russian journal of nonlinear dynamics
%D 2016
%P 235-250
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_2_a5/
%G ru
%F ND_2016_12_2_a5
I. R. Sataev; A. O. Kazakov. Scenarios of transition to chaos in the nonholonomic model of a Chaplygin top. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 235-250. http://geodesic.mathdoc.fr/item/ND_2016_12_2_a5/

[1] Shen J., Schneider D. A., Bloch A. M., “Controllability and motion planning of a multibody Chaplygin’s sphere and Chaplygin’s top”, Int. J. Robust Nonlinear Control, 18:9 (2008), 905–945 | DOI | MR | Zbl

[2] Chaplygin S. A., “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 131–148 | DOI | MR | Zbl

[3] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl

[5] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[6] Routh E. J., A treatise on the dynamics of a system of rigid bodies: P. 2. The advanced part, 6th ed., Dover, New York, 1955, xiv+484 pp. | MR

[7] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 8:3 (2013), 277–328 | DOI | MR

[8] Kazakov A. O., “Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane”, Regul. Chaotic Dyn., 18:5 (2013), 508–520 | DOI | MR | Zbl

[9] Kazakov A. O., “On the chaotic dynamics of a rubber ball with three internal rotors”, Nonlinear Dynamics Mobile Robotics, 2:1 (2014), 73–97

[10] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “Richness of chaotic dynamics in nonholonomic models of a Celtic stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538 | DOI | MR | Zbl

[11] Kuznetsov S. P., “On the validity of the nonholonomic model of the rattleback”, Physics-Uspekhi, 58:12 (2015), 1223–1224 | DOI | DOI

[12] Borisov A. V., Kazakov A. O., Kuznetsov S. P., “Nonlinear dynamics of the rattleback: A nonholonomic model”, Physics-Uspekhi, 57:5 (2014), 453–460 | DOI | DOI

[13] Borisov A. V., Kazakov A. O., Sataev I. R., “Regular and chaotic attractors in the nonholonomic model of Chapygin’s ball”, Nelin. Dinam., 10:3 (2014), 361–380 (Russian) | Zbl

[14] Borisov A. V., Kazakov A. O., Sataev I. R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733 | DOI | MR | Zbl

[15] Walker G. T., “On a curious dynamical property of celts”, Proc. Cambridge Phil. Soc., 8:5 (1895), 305–306

[16] Astapov I. S., “On rotation stability of celtic stone”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1980, no. 2, 97–100 (Russian) | Zbl

[17] Karapetyan A. V., “On realizing nonholonomic constraints by viscous friction forces and celtic stones stability”, J. Appl. Math. Mech., 45:1 (1981), 30–36 | DOI | MR | Zbl

[18] Markeev A. P., “The dynamics of a rigid body on an absolutely rough plane”, J. Appl. Math. Mech., 47:4 (1983), 473–478 | DOI | Zbl

[19] Walker J., “The amateur scientist: The mysterious "rattleback": A stone that spins in one direction and then reverses”, Sci. Am., 241 (1979), 172–184 | DOI

[20] Borisov A. V., Mamaev I. S., “Strange attractors in rattleback dynamics”, Physics-Uspekhi, 46:4 (2003), 393–403 | DOI | DOI

[21] Borisov A. V., Kilin A. A., Mamaev I. S., “New effects in dynamics of rattlebacks”, Dokl. Phys., 51:5 (2006), 272–275 | DOI | MR | Zbl

[22] Gonchenko A., Gonchenko S., Kazakov A., Turaev D., “Simple scenarios of onset of chaos in three-dimensional maps”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:8 (2014), 1440005, 25 pp. | DOI | MR | Zbl

[23] Afraimovich V. S., Shilnikov L. P., “Invariant two-dimensional tori, their breakdown and stochasticity”, Methods of qualitative theory of differential equations, ed. E. A. Leontovich-Andronova, Gorky Gos. Univ., Gorky, 1983, 3–26 (Russian) | MR

[24] Arneodo A., Coullet P. H., Spiegel E. A., “Cascade of period doublings of tori”, Phys. Lett. A, 94:1 (1983), 1–6 | DOI | MR

[25] Kaneko K., “Doubling of torus”, Progr. Theoret. Phys., 69:6 (1983), 1806–1810 | DOI | MR | Zbl

[26] Vitolo R., Broer H., Simó C., “Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems”, Regul. Chaotic Dyn., 16:1–2 (2011), 154–184 | DOI | MR | Zbl

[27] Gonchenko A. S., Gonchenko S. V., Shilnikov L. P., “Towards scenarios of chaos appearance in three-dimensional maps”, Nelin. Dinam., 8:1 (2012), 3–28 (Russian)

[28] Mora L., Viana M.,, “Abundance of strange attractors”, Acta Math., 171:1 (1993), 1–71 | DOI | MR | Zbl

[29] Borisov A. V., Mamaev I. S., Dynamics of a rigid body: Hamiltonian methods, integrability, chaos, 2nd ed., R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2005 (Russian) | MR

[30] Kuznetsov S. P., Dynamical chaos, 2nd ed., Fizmatlit, Moscow, 2006 (Russian)

[31] Borisov A. V., Jalnin A. Yu., Kuznetsov S. P., Sataev I. R., Sedova J. V., “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532 | DOI | MR | Zbl

[32] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them: P. 1: Theory; P. 2: Numerical application”, Meccanica, 15 (1980), 9–30 | DOI

[33] Feigenbaum M. J., “Quantitative universality for a class of nonlinear transformations”, J. Stat. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl

[34] Kuznetsov S. P., “Effect of a periodic external perturbation on a system which exhibits an order-chaos transition through period-doubling-bifurcations metal-insulator-semiconductor”, JETP Lett., 39:3 (1984), 133–136

[35] Anishchenko V. S., Stochastic oscillations in radiophysical systems: P. 2, Saratov Gos. Univ., Saratov, 1986 (Russian)

[36] Krauskopf B., Osinga H., “Growing 1D and quasi-2D unstable manifolds of maps”, J. Comput. Phys., 146:1 (1998), 404–419 | DOI | MR | Zbl

[37] Aronson D. G., Chory M. A., Hall G. R., McGehee R. P., “Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study”, Comm. Math. Phys., 83:3 (1982), 303–354 | DOI | MR | Zbl

[38] Ostlund S., Rand D., Sethna J., Siggia E., “Universal properties of the transition from quasi-periodicity to chaos in dissipative systems”, Phys. D, 8:3 (1983), 303–342 | DOI | MR | Zbl

[39] Broer H., Simó C., Vitolo R., “Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing”, Nonlinearity, 15:4 (2002), 1205–1267 | DOI | MR | Zbl

[40] Broer H. W., Simó C., Vitolo R., “Quasi-periodic Hénon-like attractors in the Lorenz-84 climate model with seasonal forcing”, Equadiff 2003: Proc. Internat. Conf. on Differential Equations (Hasselt, Belgium, 22–26 July 2003), eds. F. Dumortier, H. W. Broer, J. Mahwin, S. M. Verduyn-Lunel, World Sci., Singapore, 2005, 714–719 | DOI | MR | Zbl