Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 223-234

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of mechanical systems are discussed, where quasi-periodic motions may occur, caused by an irrational ratio of the radii of rotating elements that constitute the system. For the pendulum system with frictional transmission of rotation between the elements, in the conservative and dissipative cases we note the coexistence of an infinite number of stable fixed points, and in the case of the self-oscillating system the presence of many attractors in the form of limit cycles and of quasi-periodic rotational modes is observed. In the case of quasi-periodic dynamics the frequencies of spectral components depend on the parameters, but the ratio of basic incommensurate frequencies remains constant and is determined by the irrational number characterizing the relative size of the elements.
Keywords: dynamic system, mechanical transmission, quasi-periodic oscillations, attractor.
@article{ND_2016_12_2_a4,
     author = {A. P. Kuznetsov and S. P. Kuznetsov and Yu. V. Sedova},
     title = {Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics},
     journal = {Russian journal of nonlinear dynamics},
     pages = {223--234},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_2_a4/}
}
TY  - JOUR
AU  - A. P. Kuznetsov
AU  - S. P. Kuznetsov
AU  - Yu. V. Sedova
TI  - Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 223
EP  - 234
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_2_a4/
LA  - ru
ID  - ND_2016_12_2_a4
ER  - 
%0 Journal Article
%A A. P. Kuznetsov
%A S. P. Kuznetsov
%A Yu. V. Sedova
%T Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics
%J Russian journal of nonlinear dynamics
%D 2016
%P 223-234
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_2_a4/
%G ru
%F ND_2016_12_2_a4
A. P. Kuznetsov; S. P. Kuznetsov; Yu. V. Sedova. Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 223-234. http://geodesic.mathdoc.fr/item/ND_2016_12_2_a4/