Van der Pol’s controlled 2D oscillator
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 211-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are two reasons for 2D auto-oscillations to be of such interest for analysis. Firstly, mechanical systems based on such a model are widely used. Secondly, unlike 1D van der Pol’s oscillator, a 2D model as a mathematical object has much more characteristics: in addition to potential and dissipative forces, more complicated forces can be taken into account, which characterize different specific behaviors of the oscillator.
Keywords: van der Pol’s oscillator.
@article{ND_2016_12_2_a3,
     author = {V. F. Zhuravlev},
     title = {Van der {Pol{\textquoteright}s} controlled {2D} oscillator},
     journal = {Russian journal of nonlinear dynamics},
     pages = {211--222},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_2_a3/}
}
TY  - JOUR
AU  - V. F. Zhuravlev
TI  - Van der Pol’s controlled 2D oscillator
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 211
EP  - 222
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_2_a3/
LA  - ru
ID  - ND_2016_12_2_a3
ER  - 
%0 Journal Article
%A V. F. Zhuravlev
%T Van der Pol’s controlled 2D oscillator
%J Russian journal of nonlinear dynamics
%D 2016
%P 211-222
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_2_a3/
%G ru
%F ND_2016_12_2_a3
V. F. Zhuravlev. Van der Pol’s controlled 2D oscillator. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 211-222. http://geodesic.mathdoc.fr/item/ND_2016_12_2_a3/

[1] Loper E. J., Lynch D. D., “The HRG: A new low-nose inertial rotation sensor”, Proc. of the 16 Jt. Services Data Exchange For Inertial Systems (Los Angeles, Calif., 1982)

[2] Stiles J. C., Vibrating ring gyro, Patent US No 3 924 475, Dec 9, 1975

[3] Zhuravlev V. Ph., Klimov D. M., A wave solid-state gyroscope, Nauka, Moscow, 1985 (Russian)

[4] Friedland B., Hutton M. F., “Theory and error analysis of vibrating-member gyroscope”, IEEE Trans. Automat. Control, 23:4 (1978), 545–556 | DOI | MR | Zbl

[5] Zhuravlev V. Ph., Klimov D. M., Applied methods in oscillation theory, Nauka, Moscow, 1988 (Russian) | MR

[6] Zhuravlev V. Ph., “On the solution of equations of the linear oscillator with respect to the matrix of the inertial trihedron”, Dokl. Phys., 50:10 (2005), 519–523 | DOI | MR

[7] Zhuravlev V. Ph., Klimov D. M., Group-theoretic methods in mechanics and applied mathematics, Differential and Integral Equations and Their Applications, 2, CRC Press, Boca Raton, Fla., 2002, 230 pp. | MR