Chimera regimes in a ring of elements with local unidirectional interaction
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 197-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

Complex spatial structures, called chimeras, are the subject of considerable recent interest. They consist of stationary areas with coherent and incoherent behavior of neighboring elements. A number of problems related to similar structures have not been solved yet. One of these problems concerns the element interaction in ensembles, when stable chimera structures can be observed. Until quite recently it was assumed that one of the most important conditions for the existence of chimeras is the nonlocal character of interaction. However, this assumption is not exactly correct. Chimeras can be realized for special types of local coupling. So, the chimera examples were obtained in ensembles with inertial local coupling. The additional variable is introduced for a coupling specification. It is given by a linear differential equation. Also, the so-called virtual chimeras exist in oscillators with delayed feedback. This allows one to assume that chimera states can be obtained in a ring of local coupling oscillators with unidirectional interaction, which is inertialess, but has a nonlinear character. This assumption is based on a qualitative similarity between the behaviors of an oscillator with delay feedback and a ring of the same oscillators with local unidirectional coupling. The basis of this work is the system with delay feedback, which demonstrates the existence of a virtual chimera. The distributed analog is investigated. It is an oscillator ring with unidirectional nonlinear local coupling. The existence of chimera structures in the ring were found in the special area of parameter changing via computing simulation. This chimera moves in a ring with constant velocity and is similar to the chimera in the system with delay feedback. The area of chimera existence of parameter variations was studied. Regime diagrams were plotted on the plane of control parameters. The scenario of chimera destruction for the coupling increase was shown.
Keywords: oscillator with delayed feedback, distributed system, dynamical chaos, local coupling.
Mots-clés : spatial structure, chimera
@article{ND_2016_12_2_a2,
     author = {I. A. Shepelev and T. E. Vadivasova},
     title = {Chimera regimes in a ring of elements with local unidirectional interaction},
     journal = {Russian journal of nonlinear dynamics},
     pages = {197--209},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_2_a2/}
}
TY  - JOUR
AU  - I. A. Shepelev
AU  - T. E. Vadivasova
TI  - Chimera regimes in a ring of elements with local unidirectional interaction
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 197
EP  - 209
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_2_a2/
LA  - ru
ID  - ND_2016_12_2_a2
ER  - 
%0 Journal Article
%A I. A. Shepelev
%A T. E. Vadivasova
%T Chimera regimes in a ring of elements with local unidirectional interaction
%J Russian journal of nonlinear dynamics
%D 2016
%P 197-209
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_2_a2/
%G ru
%F ND_2016_12_2_a2
I. A. Shepelev; T. E. Vadivasova. Chimera regimes in a ring of elements with local unidirectional interaction. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 197-209. http://geodesic.mathdoc.fr/item/ND_2016_12_2_a2/

[1] Kuznetsov S. P., “Complex dynamics of oscillators with delayed feedback (review)”, Radiophys. Quantum El., 25:12 (1982), 996–1009 | DOI

[2] Abrams D. M., Strogatz S. H., “Chimera states for coupled oscillators”, Phys. Rev. Lett., 93:17 (2003), 174102, 4 pp. | DOI

[3] Abrams M., Mirollo R., Strogatz S. H., Wiley D. A., “Solvable model for chimera states of coupled oscillators”, Phys. Rev. Lett., 101:8 (2008), 084103, 4 pp. | DOI

[4] Arecchi F. T., Giacomelli G., Lapucci A., Meucci R., “Two-dimensional representation of a delayed dynamical system”, Phys. Rev. A, 45:7 (1992), R4225–R4228 | DOI

[5] Arecchi F. T., Meucci R., Allaria E., Di Garbo A., Tsimring L. S., “Delayed self-synchronization in homoclinic chaos”, Phys. Rev. E, 65:4 (2002), 046237, 4 pp. | DOI

[6] Baldi P., Atiya A. F., “How delays affect neural dynamics and learning”, IEEE Trans. Neural Netw., 5:4 (1994), 612–621 | DOI

[7] Bocharov G. A, Rihan F. A., “Numerical modelling in biosciences using delay differential equations”, J. Comput. Appl. Math., 125:1 (2000), 183–199 | DOI | MR | Zbl

[8] Dahlem M. A., Hiller G., Panchuk A., Schöll E., “Dynamics of delay-coupled excitable neural systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19:2 (2009), 745–753 | DOI | MR | Zbl

[9] Ford N. J., Baker C. T. H., “Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type”, J. Comput. Appl. Math., 66:1 (1996), 213–225 | DOI | MR | Zbl

[10] Giacomelli G., Politi A., “Relationship between delayed and spatially extended dynamical systems”, Phys. Rev. Lett., 76:15 (1996), 2686–2689 | DOI

[11] Giacomelli G., Marino F., Zaks M. A., Yanchuk S., “Coarsening in a bistable system with long-delayed feedback”, Europhys. Lett., 99:5 (2012), 58005, 5 pp. | DOI

[12] Jaros P., Maistrenko Yu., Kapitaniak T., “Chimera states on the route from coherence to rotating waves”, Phys. Rev. E, 91:2 (2015), 022907, 5 pp. | DOI

[13] Kuramoto Y., Battogtokh D., “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenom. Complex Syst., 5:4 (2002), 380–385

[14] Laing C. R., “Chimera in networks with purely local coupling”, Phys. Rev. E, 92:5 (2015), 050904, 5 pp. | DOI

[15] Larger L., Penkovsky B., Maistrenko Yu., “Virtual chimera states for delayed-feedback systems”, Phys. Rev. Lett., 111:5 (2013), 054103, 5 pp. | DOI

[16] Larger L., Penkovsky B., Maistrenko Yu., “Laser chimeras as a paradigm for multistable patterns in complex systems”, Nat. Commun., 6 (2015), 7752 | DOI

[17] Mao X., Yuan C., Zou J., “Stochastic differential delay equations of population dynamics”, J. Comput. Appl. Math., 304:1 (2005), 296–320 | MR | Zbl

[18] Mounier H., Rudolph J., “Time delay systems”, Control systems, robotics, and automation: Vol. 14, ed. H. Unbehauen, EOLSS, Oxford, 2014, 9 pp.

[19] Omelchenko I., Maistrenko Yu., Hövel Ph., Schöll E., “Loss of coherence in dynamical networks: Spatial chaos and chimera states”, Phys. Rev. Lett., 106:23 (2011), 234102, 4 pp. | DOI

[20] Omelchenko I., Riemenschneider B., Hövel Ph., Schöll E., “Transition from spatial coherence to incoherence in coupled chaotic systems”, Phys. Rev. E, 85:2 (2012), 026212, 9 pp. | DOI

[21] Omelchenko I., Omel'chenko O. E., Hövel Ph., Schöll E., “When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states”, Phys. Rev. Lett., 110:22 (2013), 224101, 5 pp. | DOI

[22] Omel'chenko O. E., “Coherence–incoherence patterns in a ring of non-locally coupled phase oscillators”, Nonlinearity, 26:9 (2013), 2469–2498 | DOI | MR | Zbl

[23] Panaggio M. J., Abrams D. M., “Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators”, Nonlinearity, 28:3 (2014), R67–R87 | DOI | MR

[24] Pyragas K., “Continuous control of chaos by self-controlling feedback”, Phys. Lett. A, 170:6 (1992), 421–428 | DOI

[25] Pyragas K., “Delayed feedback control of chaos”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 364:1846 (2006), 2309–2334 | DOI | MR | Zbl

[26] Schöll E., Hövel Ph., Flunkert V., Dahlem M. A., “Time-delayed feedback control: From simple models to lasers and neural systems”, Complex time-delay systems: Theory and applications, ed. F. M. Atay, Springer, Berlin, 2010, 85–150 | MR | Zbl

[27] Schöll E., Hiller G., Hövel Ph., Dahlem M. A., “Time-delayed feedback in neurosystems”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367:1891 (2009), 1079–1096 | DOI | MR | Zbl

[28] Schmidt L. T., Schönleber K., Krischer K., García-Morales V., “Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling”, Chaos, 24:1 (2014), 013102, 7 pp. | DOI | MR

[29] Sethia G. C., Senan A., Johnston G. L., “Amplitude-mediated chimera states”, Phys. Rev. E, 88:4 (2013), 042917, 5 pp. | DOI

[30] Süli E., Mayers D. F., An introduction to numerical analysis, Cambridge Univ. Press, Cambridge, 2003, 444 pp. | MR

[31] Zakharova A., Kapeller M., Schöll E., “Chimera death: Symmetry breaking in dynamical networks”, Phys. Rev. Lett., 112:15 (2014), 154101, 5 pp. | DOI