Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_2_a2, author = {I. A. Shepelev and T. E. Vadivasova}, title = {Chimera regimes in a ring of elements with local unidirectional interaction}, journal = {Russian journal of nonlinear dynamics}, pages = {197--209}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_2_a2/} }
TY - JOUR AU - I. A. Shepelev AU - T. E. Vadivasova TI - Chimera regimes in a ring of elements with local unidirectional interaction JO - Russian journal of nonlinear dynamics PY - 2016 SP - 197 EP - 209 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_2_a2/ LA - ru ID - ND_2016_12_2_a2 ER -
I. A. Shepelev; T. E. Vadivasova. Chimera regimes in a ring of elements with local unidirectional interaction. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 197-209. http://geodesic.mathdoc.fr/item/ND_2016_12_2_a2/
[1] Kuznetsov S. P., “Complex dynamics of oscillators with delayed feedback (review)”, Radiophys. Quantum El., 25:12 (1982), 996–1009 | DOI
[2] Abrams D. M., Strogatz S. H., “Chimera states for coupled oscillators”, Phys. Rev. Lett., 93:17 (2003), 174102, 4 pp. | DOI
[3] Abrams M., Mirollo R., Strogatz S. H., Wiley D. A., “Solvable model for chimera states of coupled oscillators”, Phys. Rev. Lett., 101:8 (2008), 084103, 4 pp. | DOI
[4] Arecchi F. T., Giacomelli G., Lapucci A., Meucci R., “Two-dimensional representation of a delayed dynamical system”, Phys. Rev. A, 45:7 (1992), R4225–R4228 | DOI
[5] Arecchi F. T., Meucci R., Allaria E., Di Garbo A., Tsimring L. S., “Delayed self-synchronization in homoclinic chaos”, Phys. Rev. E, 65:4 (2002), 046237, 4 pp. | DOI
[6] Baldi P., Atiya A. F., “How delays affect neural dynamics and learning”, IEEE Trans. Neural Netw., 5:4 (1994), 612–621 | DOI
[7] Bocharov G. A, Rihan F. A., “Numerical modelling in biosciences using delay differential equations”, J. Comput. Appl. Math., 125:1 (2000), 183–199 | DOI | MR | Zbl
[8] Dahlem M. A., Hiller G., Panchuk A., Schöll E., “Dynamics of delay-coupled excitable neural systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19:2 (2009), 745–753 | DOI | MR | Zbl
[9] Ford N. J., Baker C. T. H., “Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type”, J. Comput. Appl. Math., 66:1 (1996), 213–225 | DOI | MR | Zbl
[10] Giacomelli G., Politi A., “Relationship between delayed and spatially extended dynamical systems”, Phys. Rev. Lett., 76:15 (1996), 2686–2689 | DOI
[11] Giacomelli G., Marino F., Zaks M. A., Yanchuk S., “Coarsening in a bistable system with long-delayed feedback”, Europhys. Lett., 99:5 (2012), 58005, 5 pp. | DOI
[12] Jaros P., Maistrenko Yu., Kapitaniak T., “Chimera states on the route from coherence to rotating waves”, Phys. Rev. E, 91:2 (2015), 022907, 5 pp. | DOI
[13] Kuramoto Y., Battogtokh D., “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenom. Complex Syst., 5:4 (2002), 380–385
[14] Laing C. R., “Chimera in networks with purely local coupling”, Phys. Rev. E, 92:5 (2015), 050904, 5 pp. | DOI
[15] Larger L., Penkovsky B., Maistrenko Yu., “Virtual chimera states for delayed-feedback systems”, Phys. Rev. Lett., 111:5 (2013), 054103, 5 pp. | DOI
[16] Larger L., Penkovsky B., Maistrenko Yu., “Laser chimeras as a paradigm for multistable patterns in complex systems”, Nat. Commun., 6 (2015), 7752 | DOI
[17] Mao X., Yuan C., Zou J., “Stochastic differential delay equations of population dynamics”, J. Comput. Appl. Math., 304:1 (2005), 296–320 | MR | Zbl
[18] Mounier H., Rudolph J., “Time delay systems”, Control systems, robotics, and automation: Vol. 14, ed. H. Unbehauen, EOLSS, Oxford, 2014, 9 pp.
[19] Omelchenko I., Maistrenko Yu., Hövel Ph., Schöll E., “Loss of coherence in dynamical networks: Spatial chaos and chimera states”, Phys. Rev. Lett., 106:23 (2011), 234102, 4 pp. | DOI
[20] Omelchenko I., Riemenschneider B., Hövel Ph., Schöll E., “Transition from spatial coherence to incoherence in coupled chaotic systems”, Phys. Rev. E, 85:2 (2012), 026212, 9 pp. | DOI
[21] Omelchenko I., Omel'chenko O. E., Hövel Ph., Schöll E., “When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states”, Phys. Rev. Lett., 110:22 (2013), 224101, 5 pp. | DOI
[22] Omel'chenko O. E., “Coherence–incoherence patterns in a ring of non-locally coupled phase oscillators”, Nonlinearity, 26:9 (2013), 2469–2498 | DOI | MR | Zbl
[23] Panaggio M. J., Abrams D. M., “Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators”, Nonlinearity, 28:3 (2014), R67–R87 | DOI | MR
[24] Pyragas K., “Continuous control of chaos by self-controlling feedback”, Phys. Lett. A, 170:6 (1992), 421–428 | DOI
[25] Pyragas K., “Delayed feedback control of chaos”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 364:1846 (2006), 2309–2334 | DOI | MR | Zbl
[26] Schöll E., Hövel Ph., Flunkert V., Dahlem M. A., “Time-delayed feedback control: From simple models to lasers and neural systems”, Complex time-delay systems: Theory and applications, ed. F. M. Atay, Springer, Berlin, 2010, 85–150 | MR | Zbl
[27] Schöll E., Hiller G., Hövel Ph., Dahlem M. A., “Time-delayed feedback in neurosystems”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367:1891 (2009), 1079–1096 | DOI | MR | Zbl
[28] Schmidt L. T., Schönleber K., Krischer K., García-Morales V., “Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling”, Chaos, 24:1 (2014), 013102, 7 pp. | DOI | MR
[29] Sethia G. C., Senan A., Johnston G. L., “Amplitude-mediated chimera states”, Phys. Rev. E, 88:4 (2013), 042917, 5 pp. | DOI
[30] Süli E., Mayers D. F., An introduction to numerical analysis, Cambridge Univ. Press, Cambridge, 2003, 444 pp. | MR
[31] Zakharova A., Kapeller M., Schöll E., “Chimera death: Symmetry breaking in dynamical networks”, Phys. Rev. Lett., 112:15 (2014), 154101, 5 pp. | DOI