Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_2_a1, author = {A. A. Burov and V. I. Nikonov}, title = {Stability and branching of stationary rotations in a planar problem of motion of mutually gravitating triangle and material point}, journal = {Russian journal of nonlinear dynamics}, pages = {179--196}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_2_a1/} }
TY - JOUR AU - A. A. Burov AU - V. I. Nikonov TI - Stability and branching of stationary rotations in a planar problem of motion of mutually gravitating triangle and material point JO - Russian journal of nonlinear dynamics PY - 2016 SP - 179 EP - 196 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_2_a1/ LA - ru ID - ND_2016_12_2_a1 ER -
%0 Journal Article %A A. A. Burov %A V. I. Nikonov %T Stability and branching of stationary rotations in a planar problem of motion of mutually gravitating triangle and material point %J Russian journal of nonlinear dynamics %D 2016 %P 179-196 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2016_12_2_a1/ %G ru %F ND_2016_12_2_a1
A. A. Burov; V. I. Nikonov. Stability and branching of stationary rotations in a planar problem of motion of mutually gravitating triangle and material point. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 179-196. http://geodesic.mathdoc.fr/item/ND_2016_12_2_a1/
[1] Abrarova E. V., Karapetyan A. V., “Bifurcation and stability of the steady motions and the relative equilibria of a rigid body in a central gravitational field”, J. Appl. Math. Mech., 60:3 (1996), 369–380 | DOI | MR | Zbl
[2] Balk M. B., Boltianskii V. G., Geometry of masses, Nauka, Moscow, 1987 (Russian) | MR
[3] Beletskii V. V., Ponomareva O. N., “A parametric analysis of relative equilibrium stability in the gravitational field”, Kosmicheskie Issledovaniya, 28:5 (1990), 664–675 (Russian)
[4] Beletskii V. V., Rodnikov A. V., “Stability of triangle libration points in generalized restricted circular three-body problem”, Cosmic Research, 46:1 (2008), 40–48 | DOI | MR
[5] Beletskii V. V., Rodnikov A. V., “Coplanar libration points in the generalized restricted circular problem of three bodies”, Nelin. Dinam., 7:3 (2011), 569–576 (Russian)
[6] Berezkin E. N., Lectures on theoretical mechanics, Mosk. Gos. Univ., Moscow, 1974 (Russian)
[7] Burov A. A., “The dynamics of bodies possessing symmetries”, Problems in the investigation of stability and stabilization of motion, A. A. Dorodnitsyn Computing Centre of the Russian Academy of Science, Moscow, 1993, 3–12 (Russian) | MR
[8] Burov A. A., “The motion of cross-shaped bodies around a fixed point in a central Newtonian force field”, J. Appl. Math. Mech., 60:1 (1996), 25–30 | DOI | MR | Zbl
[9] Burov A. A., Karapetyan A. V., “On the motion of cross-shaped bodies”, Mech. Solids, 30:6 (1995), 11–15
[10] Burov A. A., Motte I., Sławianowski J. J., Stepanov S. Ya., “On stability and bifurcations of steady motions of a dumb-bell in a sphere”, Problems in the investigation of stability and stabilization of motion, A. A. Dorodnitsyn Computing Centre of the Russian Academy of Science, Moscow, 2006, 93–104 (Russian) | MR
[11] Burov A. A., Pascal M., Stepanov S. Ya., “The gyroscopic stability of the triangular stationary solutions of the generalized planar three-body problem”, J. Appl. Math. Mech., 64:5 (2000), 729–738 | DOI | Zbl
[12] Vidyakin V. V., “Expansion of the force function of two homogeneous spheroids with noncoincident symmetry planes”, Sov. Astron., 16:3 (1972), 522–526 | MR
[13] Gasanov S. A., Luk'yanov L. G., “The libration points for the motion of a star inside an elliptical galaxy”, Astron. Rep., 46:10 (2002), 851–857 | DOI
[14] Duboshin G. N., “On one particular case of the problem of the translational-rotational motion of two bodies”, Sov. Astron., 3:1 (1959), 154–165
[15] Zhuravlev S. G., “Stability of the libration points of a rotating triaxial ellipsoid in the three-dimensional case”, Sov. Astron., 18:6 (1975), 792–794 | MR | Zbl
[16] Karapetyan A. V., The stability of steady motions, Editorial URSS, Moscow, 1998 (Russian)
[17] Karapetyan A. V., Naralenkova I. I., “The bifurcation of the equilibria of mechanical systems with symmetrical potential”, J. Appl. Math. Mech., 62:1 (1998), 9–17 | DOI | MR | Zbl
[18] Karapetyan A. V., Sakhokia I. D., “On bifurcation and stability of steady motions of two gravitating bodies”, J. Appl. Math. Mech., 56:6 (1992), 839–842 | DOI | MR | Zbl
[19] Karapetyan A. V., Sharakin S. A., “On stationary motions of two gravitating bodies and their stability”, Mosc. Univ. Mech. Bull., 47:3 (1992), 19–24 | MR | Zbl
[20] A. V. Borisov, I. S. Mamaev (eds.), Classical dynamics in non-Euclidean spaces, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2004 (Russian)
[21] Kondurar V. T., “Problem of motion of two ellipsoids under the action of mutual attraction: 1”, Astron. Zh., 13:6 (1936), 563–588 (Russian)
[22] Kondurar V. T., “Particular solutions of the general problem of the translational-rotational motion of a spheroid attracted by a sphere”, Sov. Astron., 3:5 (1960), 863–875 | MR
[23] Kosenko I. I., “On libration points near a gravitating and rotating triaxial ellipsoid”, J. Appl. Math. Mech., 45:1 (1981), 18–23 | DOI | MR | Zbl
[24] Kosenko I. I., “Libration points in the triaxial gravitating ellipsoid problem: Geometry of the stability region”, Kosmicheskie Issledovaniya, 19:2 (1981), 200–209 (Russian)
[25] Kosenko I. I., “Non-linear analysis of the stability of the libration points of a triaxial ellipsoid”, J. Appl. Math. Mech., 49:1 (1985), 17–24 | DOI | MR | Zbl
[26] Kosenko I. I., “On a power series expansion of the graviational potential of an inhomogeneous ellipsoid”, J. Appl. Math. Mech., 50:2 (1986), 142–146 | DOI | MR | Zbl
[27] Kosenko I. I., “On the stability of points of libration of an inhomogeneous triaxial ellipsoid”, J. Appl. Math. Mech., 51:1 (1987), 1–5 | DOI | MR | Zbl
[28] Kosenko I. I., Stepanov S. Ya., “Stability of relative equilibria of an orbit tether with impact interactions taken into account: The unbounded problem”, Mech. Solids, 41:4 (2006), 64–72
[29] Munitsyna M. A., “Steady motions of two mutually gravitating bodies and their stability”, Mosc. Univ. Mech. Bull., 60:6 (2005), 11–15 | MR | Zbl
[30] Nikonov V. I., “Quantum's problem collection: Problem no. Ph2325”, Quantum, 2013, no. 5–6, 14 (Russian)
[31] Nikonov V. I., “Relative equilibria in the motion of a triangle and a point under mutual attraction”, Mosc. Univ. Mech. Bull., 69:2 (2014), 44–50 | DOI | MR | Zbl
[32] Nikonov V. I., “The existence and stability of steady configurations in the problem of the motion of a wire triangle and a point mass under the mutual attraction”, J. Appl. Math. Mech., 79:3 (2015), 229–236 | DOI | MR
[33] Okunev Yu. M., “The possible motions of a long dumb-bell in a central force field”, Kosmicheskie Issledovaniya, 7:5 (1969), 637–642 (Russian)
[34] Sulikashvili R. S., “The steady motions of a tetrahedron and octahedron in a central gravitational field”, Problems in the investigation of stability and stabilization of motion, A. A. Dorodnitsyn Computing Centre of the Russian Academy of Science, Moscow, 1987, 57–66 (Russian) | MR
[35] Sulikashvili R. S., “On the stability of stationary motions of bodies with spherical inertia tensor in a Newtonian force field”, J. Appl. Math. Mech., 51:5 (1987), 593–597 | DOI | MR | Zbl
[36] Beletsky V. V., Rodnikov A. V., “On evolution of libration points similar to Eulerian in the model problem of the binary-asteroids dynamics”, J. Vibroeng., 10:4 (2008), 550–556
[37] Borisov A. V., Mamaev I. S., Kilin A. A., “Two-body problem on a sphere: Reduction, stochasticity, periodic orbits”, Regul. Chaotic Dyn., 9:3 (2004), 265–279 | DOI | MR | Zbl
[38] Bourov A., Pascal M., Stepanov S., “Steady motions of two mass points connected with spring in a Newtonian force field”, Cahier du CERMA, 14 (1996), 1–13
[39] Burov A. A., Sulikashvili R. S., “On the motion of a rigid body possessing a finite group of symmetry”, Prepublication de la laboratoire de mathématiques appliquées, 1993, no. 25, 8 pp.
[40] Hernández-Garduño A., Marsden J. E., “Regularization of the amended potential and the bifurcation of relative equilibria”, J. Nonlinear Sci., 15:2 (2005), 93–132 | DOI | MR | Zbl
[41] Herrera Sucarrat E., The full problem of two and three bodies: Application to asteroids and binaries, PhD Dissertation, University of Surrey, Guildford, 2012, 180 pp.
[42] Herrera-Sucarrat E., Palmer P. L., Roberts R. M., “Modeling the gravitational potential of a non-spherical asteroid”, J. Guid. Control Dynam., 36:3 (2013), 790–798 | DOI
[43] Karapetian A. V., “On construction of the effective potential in singular cases”, Regul. Chaotic Dyn., 5:2 (2000), 219–224 | DOI | MR
[44] Margot J.-L., Pravec P., Taylor P., Carry B., Jacobson S., Asteroid systems: Binaries, triples, and pairs, 2015, 31 pp., arXiv: 1504.00034v3 [astro-ph.EP]
[45] Moran J. P., “Effects of plane librations on the orbital motion of a dumbbell satellite”, ARS Journal, 31:8 (1961), 1089–1096 | DOI | Zbl
[46] Nikonov V., “On relative equilibria of mutually gravitating massive point and triangular rigid body”, Proc. of the Internat. Astronomical Union, 9:s310 (2015), 170–171
[47] Rodnikov A. V., “Rotations of a dumbbell equipped with the «leier constraint»”, J. Vibroeng., 10:4 (2008), 557–561
[48] Routh E. J., A treatise on stability of a given state of motion, McMillan, London, 1877, 108 pp.
[49] Routh E. J., The advanced part of a treatise on the dynamics of a system of rigid bodies: Being part II of a treatise on the whole subject, 6th ed., Dover, New York, 1955, 484 pp. | MR
[50] Scheeres D. J., Orbital motion in strongly perturbed environments: Applications to asteroid, comet and planetary satellite orbiters, Springer, Berlin, 2012, 390 pp.
[51] Schechter H. B., “Dumbbell librations in elliptic orbits”, AIAA Journal, 2:6 (1964), 1000–1003 | DOI | Zbl
[52] Sulikashvili R. S., “Stationary motions of bodies that admit groups of symmetries of regular polyhedra in a Newtonian force field”, J. Appl. Math. Mech., 53:4 (1989), 452–456 | DOI | MR | Zbl
[53] Sulikashvili R. S., “On stationary motions of Plato's bodies in a gravitational field”, Teor. Primen. Meh., 15 (1989), 119–125 | MR
[54] Turconi A., Palmer Ph., Roberts M., “Simple gravitational models and control laws for autonomous operations in proximity of uniformly rotating asteroids”, AIAA Astrodynamics Specialist Conference (Vail, USA, 2015): Conference paper AAS-15, 693–694
[55] Zeng X., Jiang F., Li J., Baoyin H., “Study on the connection between the rotating mass dipole and natural elongated bodies”, Astrophys. Space Sci., 356:1 (2015), 29–42 | DOI
[56] Zeng X., Baoyin H., Li J., “Updated rotating mass dipole with oblateness of one primary: 1. Equilibria in the equator and their stability”, Astrophys. Space Sci., 361:1 (2016), Art. 14, 12 pp.
[57] Zhuravlev S. G., “Stability of the libration points of a rotating triaxial ellipsoid”, Celestial Mech., 6:3 (1972), 255–267 | DOI | Zbl
[58] Zhuravlev S. G., “About the stability of the libration points of a rotating triaxial ellipsoid in a degenerate case”, Celestial Mech., 8:1 (1973), 75–84 | DOI | Zbl