Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 167-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new exact solution of the two-dimensional Oberbeck–Boussinesq equations has been found. The analytical expressions of the hydrodynamic fields, which have been obtained, describe convective Couette flow. Fluid flow occurs in the case of nonuniform distribution of velocities and the quadratic heat source at the upper boundary of an infinite layer of viscous incompressible fluid. Two characteristic scales have been introduced for finding the exact solutions of the Oberbeck–Boussinesq equations. Using the anisotropic layer allows one to explore large-scale flows of liquids for large values of the Grashof number. A connection is shown between solutions describing the quadratic heating of boundaries with boundary problems concerned with motions of fluids in which the temperature is distributed linearly. Analysis of polynomial solutions describing the natural convection of the fluid is presented. The existence of points at which the hydrodynamic fields vanish inside the fluid layer. Thus, the above class of exact solutions allows us to describe the counterflows in the fluid and the separations of pressure and temperature fields.
Mots-clés : Couette flow, convection, exact solution, polynomial solution.
Keywords: linear heating, quadratic heating
@article{ND_2016_12_2_a0,
     author = {S. N. Aristov and V. V. Privalova and E. Yu. Prosviryakov},
     title = {Stationary nonisothermal {Couette} flow. {Quadratic} heating of the upper boundary of the fluid layer},
     journal = {Russian journal of nonlinear dynamics},
     pages = {167--178},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_2_a0/}
}
TY  - JOUR
AU  - S. N. Aristov
AU  - V. V. Privalova
AU  - E. Yu. Prosviryakov
TI  - Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 167
EP  - 178
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_2_a0/
LA  - ru
ID  - ND_2016_12_2_a0
ER  - 
%0 Journal Article
%A S. N. Aristov
%A V. V. Privalova
%A E. Yu. Prosviryakov
%T Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer
%J Russian journal of nonlinear dynamics
%D 2016
%P 167-178
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_2_a0/
%G ru
%F ND_2016_12_2_a0
S. N. Aristov; V. V. Privalova; E. Yu. Prosviryakov. Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 167-178. http://geodesic.mathdoc.fr/item/ND_2016_12_2_a0/

[1] Andreev V. K., Birikh solution of convection equations and some of its generalizations, Preprint No 1–10, Inst. Computer Modeling, Sib. Branch, Russian Acad. of Sci., Krasnoyarsk, 2010 (Russian)

[2] Andreev V. K., Bekezhanova V. B., “Stability of non-isothermal fluids (review)”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 171–184 | DOI | MR | Zbl

[3] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier – Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI

[4] Aristov S. N., Polyanin A. D., “New classes of exact solutions of Euler equations”, Dokl. Phys., 53:3 (2008), 166–171 | DOI | MR | Zbl

[5] Aristov S. N., Polyanin A. D., “Exact solutions of unsteady three-dimensional Navier – Stokes equations”, Dokl. Phys., 54:7 (2009), 316–321 | DOI | MR | Zbl

[6] Aristov S. N., Prosviryakov E. Yu., “Inhomogeneous Couette flow”, Nelin. Dinam., 10:2 (2014), 177–182 (Russian) | Zbl

[7] Aristov S. N., Prosviryakov E. Yu., “On laminar flows of planar free convection”, Nelin. Dinam., 9:4 (2013), 651–657 (Russian) | MR

[8] Aristov S. N., Schwarz K. G., Vortex flows of advective nature in a rotating fluid layer, Perm Gos. Univ., Perm, 2006 (Russian)

[9] Aristov S. N., Schwarz K. G., Vortex flows in thin fluid layers, Vyatka Gos. Univ., Kirov, 2011 (Russian)

[10] Betyaev S. K., Asymptotic methods of classical fluid dynamics, Institute of Computer Science, Moscow – Izhevsk, 2014 (Russian)

[11] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI

[12] Broman G. I., Rudenko O. V., “Submerged Landau jet: Exact solutions, their meaning and application”, Physics–Uspekhi, 53:1 (2010), 91–98 | DOI

[13] Gershuni G. Z., Zhukhovitsky E. M., Convective stability of incompressible fluid, Nauka, Moscow, 1972 (Russian)

[14] Ingel L. Kh., Kalashnik M. V., “Nontrivial features in the hydrodynamics of seawater and other stratified solutions”, Physics-Uspekhi, 55:4 (2012), 356–381 | DOI | DOI

[15] Landau L. D., Lifshitz E. M., Course of theoretical physics: Vol. 6. Fluid mechanics, 2nd ed., Butterworth/Heinemann, Oxford, 2003, 552 pp. | MR

[16] Levich V. G., Physico-chemical hydrodynamics, Prentice Hall, Englewood Cliffs, N.J., 1962, 700 pp.

[17] Meleshko S. V., Pukhnachev V. V., “One class of partially invariant solutions of the Navier – Stokes equations”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 208–216 | DOI | MR | Zbl

[18] Nemeni P. F., “Sovremennoe razvitie obratnykh i poluobratnykh metodov v mekhanike sploshnoi sredy”, Problemy mekhaniki, eds. R. Mizes, T. Karman, Inostrannaya literatura, Moskva, 1955, 234–257; Nemenyi P. F., “Recent developments in inverse and semi-inverse methods in the mechanics of continua”, Advances in Applied Mechanics: Vol. 2, eds. R. von Mises, Th. von Kármán, Acad. Press, New York, 1951, 123–151 | DOI | MR | Zbl

[19] Ostroumov G. A., Free convection under the conditions of the internal problem, Gostekhizdat, Moscow, 1952 (Russian) | MR

[20] Polyanin A. D., Zaitsev V. F., “Equations of an unsteady-state laminar boundary layer: General transformations and exact solutions”, Theor. Found. Chem. Eng., 35:6 (2001), 529–539 | DOI

[21] Pukhnachev V. V., “Symmetries in the Navier – Stokes equations”, Uspekhi Mekh., 4:1 (2006), 6–76 (Russian) | MR

[22] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30:2 (1989), 197–203 | DOI | MR

[23] Skul'skii O. I., Aristov S. N., Mechanics of anomalous viscous fluids, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2003 (Russian)

[24] Aristov S. N., Gitman I. M., “Viscous flow between two moving parallel disks: Exact solutions and stability analysis”, J. Fluid Mech., 464 (2002), 209–215 | DOI | MR | Zbl

[25] Couette M., “Études sur le frottement des liquides”, Ann. Chim. Phys., 21 (1890), 433–510

[26] Drazin P. G., Riley N., The Navier – Stokes equations: A classification of flows and exact solutions, Cambridge Univ. Press, Cambridge, 2006, 196 pp. | MR | Zbl

[27] Hagen G., “Über die Bewegung des Wasser in engen zylindrischen Rohren”, Pogg. Ann., 46 (1839), 423–442

[28] Ibragimov N. H., CRC handbook of Lie group to differential equations. Vol. 2. Applications in engineering and physical sciences, CRC Press, Boca Raton, Fla., 1995, 546 pp. | MR

[29] Kirdyashkin A. G., “Thermogravitational and thermocapillary flows in a horizontal liquid layer under the conditions of a horizontal temperature gradient”, Int. J. Heat Mass Tran., 27:8 (1984), 1205–1218 | DOI

[30] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1957), 391–395 | DOI | MR

[31] Ludlow D. K., Clarkson P. A., Bassom A. P., “Similarity reductions and exact solutions for the two-dimensional incompressible Navier – Stokes equations”, Stud. Appl. Math., 103:3 (1999), 183–240 | DOI | MR | Zbl

[32] Ludlow D. K., Clarkson P. A., Bassom A. P., “Nonclassical symmetry reductions of the three-dimensional incompressible Navier – Stokes equations”, J. Phys. A, 31:39 (1998), 7965–7980 | DOI | MR | Zbl

[33] Meleshko S. V., “A particular class of partially invariant solutions of the Navier – Stokes equations”, Nonlinear Dynam., 36:1 (2004), 47–68 | DOI | MR | Zbl

[34] Poiseuille J., “Recherches expérimenteles sur le mouvement des liquides dans les tubes de très petits diamètres”, Comptes rendus hebdomadaires des séances de l'Académie des Sciences, 11 (1840), 961–967, 1041–1048; Poiseuille J., “Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres (suite)”, Comptes rendus hebdomadaires des séances de l'Académie des Sciences, 12 (1841), 112–115

[35] Polyanin A. D., Kutepov A. M., Vyazmin A. V., Kazenin D. A., Hydrodynamics, mass and heat transfer in chemical engineering, Taylor Francis, London, 2002, 406 pp.