Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_2_a0, author = {S. N. Aristov and V. V. Privalova and E. Yu. Prosviryakov}, title = {Stationary nonisothermal {Couette} flow. {Quadratic} heating of the upper boundary of the fluid layer}, journal = {Russian journal of nonlinear dynamics}, pages = {167--178}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_2_a0/} }
TY - JOUR AU - S. N. Aristov AU - V. V. Privalova AU - E. Yu. Prosviryakov TI - Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer JO - Russian journal of nonlinear dynamics PY - 2016 SP - 167 EP - 178 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_2_a0/ LA - ru ID - ND_2016_12_2_a0 ER -
%0 Journal Article %A S. N. Aristov %A V. V. Privalova %A E. Yu. Prosviryakov %T Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer %J Russian journal of nonlinear dynamics %D 2016 %P 167-178 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2016_12_2_a0/ %G ru %F ND_2016_12_2_a0
S. N. Aristov; V. V. Privalova; E. Yu. Prosviryakov. Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 2, pp. 167-178. http://geodesic.mathdoc.fr/item/ND_2016_12_2_a0/
[1] Andreev V. K., Birikh solution of convection equations and some of its generalizations, Preprint No 1–10, Inst. Computer Modeling, Sib. Branch, Russian Acad. of Sci., Krasnoyarsk, 2010 (Russian)
[2] Andreev V. K., Bekezhanova V. B., “Stability of non-isothermal fluids (review)”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 171–184 | DOI | MR | Zbl
[3] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier – Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI
[4] Aristov S. N., Polyanin A. D., “New classes of exact solutions of Euler equations”, Dokl. Phys., 53:3 (2008), 166–171 | DOI | MR | Zbl
[5] Aristov S. N., Polyanin A. D., “Exact solutions of unsteady three-dimensional Navier – Stokes equations”, Dokl. Phys., 54:7 (2009), 316–321 | DOI | MR | Zbl
[6] Aristov S. N., Prosviryakov E. Yu., “Inhomogeneous Couette flow”, Nelin. Dinam., 10:2 (2014), 177–182 (Russian) | Zbl
[7] Aristov S. N., Prosviryakov E. Yu., “On laminar flows of planar free convection”, Nelin. Dinam., 9:4 (2013), 651–657 (Russian) | MR
[8] Aristov S. N., Schwarz K. G., Vortex flows of advective nature in a rotating fluid layer, Perm Gos. Univ., Perm, 2006 (Russian)
[9] Aristov S. N., Schwarz K. G., Vortex flows in thin fluid layers, Vyatka Gos. Univ., Kirov, 2011 (Russian)
[10] Betyaev S. K., Asymptotic methods of classical fluid dynamics, Institute of Computer Science, Moscow – Izhevsk, 2014 (Russian)
[11] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI
[12] Broman G. I., Rudenko O. V., “Submerged Landau jet: Exact solutions, their meaning and application”, Physics–Uspekhi, 53:1 (2010), 91–98 | DOI
[13] Gershuni G. Z., Zhukhovitsky E. M., Convective stability of incompressible fluid, Nauka, Moscow, 1972 (Russian)
[14] Ingel L. Kh., Kalashnik M. V., “Nontrivial features in the hydrodynamics of seawater and other stratified solutions”, Physics-Uspekhi, 55:4 (2012), 356–381 | DOI | DOI
[15] Landau L. D., Lifshitz E. M., Course of theoretical physics: Vol. 6. Fluid mechanics, 2nd ed., Butterworth/Heinemann, Oxford, 2003, 552 pp. | MR
[16] Levich V. G., Physico-chemical hydrodynamics, Prentice Hall, Englewood Cliffs, N.J., 1962, 700 pp.
[17] Meleshko S. V., Pukhnachev V. V., “One class of partially invariant solutions of the Navier – Stokes equations”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 208–216 | DOI | MR | Zbl
[18] Nemeni P. F., “Sovremennoe razvitie obratnykh i poluobratnykh metodov v mekhanike sploshnoi sredy”, Problemy mekhaniki, eds. R. Mizes, T. Karman, Inostrannaya literatura, Moskva, 1955, 234–257; Nemenyi P. F., “Recent developments in inverse and semi-inverse methods in the mechanics of continua”, Advances in Applied Mechanics: Vol. 2, eds. R. von Mises, Th. von Kármán, Acad. Press, New York, 1951, 123–151 | DOI | MR | Zbl
[19] Ostroumov G. A., Free convection under the conditions of the internal problem, Gostekhizdat, Moscow, 1952 (Russian) | MR
[20] Polyanin A. D., Zaitsev V. F., “Equations of an unsteady-state laminar boundary layer: General transformations and exact solutions”, Theor. Found. Chem. Eng., 35:6 (2001), 529–539 | DOI
[21] Pukhnachev V. V., “Symmetries in the Navier – Stokes equations”, Uspekhi Mekh., 4:1 (2006), 6–76 (Russian) | MR
[22] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30:2 (1989), 197–203 | DOI | MR
[23] Skul'skii O. I., Aristov S. N., Mechanics of anomalous viscous fluids, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2003 (Russian)
[24] Aristov S. N., Gitman I. M., “Viscous flow between two moving parallel disks: Exact solutions and stability analysis”, J. Fluid Mech., 464 (2002), 209–215 | DOI | MR | Zbl
[25] Couette M., “Études sur le frottement des liquides”, Ann. Chim. Phys., 21 (1890), 433–510
[26] Drazin P. G., Riley N., The Navier – Stokes equations: A classification of flows and exact solutions, Cambridge Univ. Press, Cambridge, 2006, 196 pp. | MR | Zbl
[27] Hagen G., “Über die Bewegung des Wasser in engen zylindrischen Rohren”, Pogg. Ann., 46 (1839), 423–442
[28] Ibragimov N. H., CRC handbook of Lie group to differential equations. Vol. 2. Applications in engineering and physical sciences, CRC Press, Boca Raton, Fla., 1995, 546 pp. | MR
[29] Kirdyashkin A. G., “Thermogravitational and thermocapillary flows in a horizontal liquid layer under the conditions of a horizontal temperature gradient”, Int. J. Heat Mass Tran., 27:8 (1984), 1205–1218 | DOI
[30] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1957), 391–395 | DOI | MR
[31] Ludlow D. K., Clarkson P. A., Bassom A. P., “Similarity reductions and exact solutions for the two-dimensional incompressible Navier – Stokes equations”, Stud. Appl. Math., 103:3 (1999), 183–240 | DOI | MR | Zbl
[32] Ludlow D. K., Clarkson P. A., Bassom A. P., “Nonclassical symmetry reductions of the three-dimensional incompressible Navier – Stokes equations”, J. Phys. A, 31:39 (1998), 7965–7980 | DOI | MR | Zbl
[33] Meleshko S. V., “A particular class of partially invariant solutions of the Navier – Stokes equations”, Nonlinear Dynam., 36:1 (2004), 47–68 | DOI | MR | Zbl
[34] Poiseuille J., “Recherches expérimenteles sur le mouvement des liquides dans les tubes de très petits diamètres”, Comptes rendus hebdomadaires des séances de l'Académie des Sciences, 11 (1840), 961–967, 1041–1048; Poiseuille J., “Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres (suite)”, Comptes rendus hebdomadaires des séances de l'Académie des Sciences, 12 (1841), 112–115
[35] Polyanin A. D., Kutepov A. M., Vyazmin A. V., Kazenin D. A., Hydrodynamics, mass and heat transfer in chemical engineering, Taylor Francis, London, 2002, 406 pp.