Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 121-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamical equations are formulated and a numerical study is provided for selfoscillatory model systems based on the triple linkage hinge mechanism of Thurston–Weeks–Hunt–MacKay. We consider systems with a holonomic mechanical constraint of three rotators as well as systems, where three rotators interact by potential forces. We present and discuss some quantitative characteristics of the chaotic regimes (Lyapunov exponents, power spectrum). Chaotic dynamics of the models we consider are associated with hyperbolic attractors, at least, at relatively small supercriticality of the self-oscillating modes; that follows from numerical analysis of the distribution for angles of intersection of stable and unstable manifolds of phase trajectories on the attractors. In systems based on rotators with interacting potential the hyperbolicity is violated starting from a certain level of excitation.
Keywords: dynamical system, hyperbolic attractor, Anosov dynamics, rotator, Lyapunov exponent, self-oscillator.
Mots-clés : chaos
@article{ND_2016_12_1_a7,
     author = {S. P. Kuznetsov},
     title = {Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: {Testing} absence of tangencies of stable and unstable manifolds for phase trajectories},
     journal = {Russian journal of nonlinear dynamics},
     pages = {121--143},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a7/}
}
TY  - JOUR
AU  - S. P. Kuznetsov
TI  - Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 121
EP  - 143
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a7/
LA  - ru
ID  - ND_2016_12_1_a7
ER  - 
%0 Journal Article
%A S. P. Kuznetsov
%T Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories
%J Russian journal of nonlinear dynamics
%D 2016
%P 121-143
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a7/
%G ru
%F ND_2016_12_1_a7
S. P. Kuznetsov. Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 121-143. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a7/

[1] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 ; Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | MR | DOI | MR | Zbl

[2] Shilnikov L., “Mathematical problems of nonlinear dynamics: A tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7:9 (1997), 1953–2001 | DOI | MR | Zbl

[3] Anosov D. V., Aranson S. Kh., Grines V. Z., Plykin R. V., Sataev E. A., Safonov A. V., Solodov V. V., Starkov A. N., Stepin A. M., Shlyachkov S. V., “Dinamicheskie sistemy s giperbolicheskim povedeniem”, Dinamicheskie sistemy — 9, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 66, ed. D. V. Anosov, VINITI, Moskva, 1991, 5–242 ; Dynamical systems 9: Dynamical systems with hyperbolic behaviour, Encyclopaedia Math. Sci., 66, ed. D. V. Anosov, Springer, Berlin, 1995, viii+236 pp. | MR

[4] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, Moskva, 1999, 768 pp.; Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. | MR | Zbl

[5] Afraimovich V., Hsu S.-B., Lectures on chaotic dynamical systems, AMS/IP Stud. Adv. Math., 28, AMS, Providence, R.I., 2003, 353 pp. | MR | Zbl

[6] Pesin Ya. B., Lectures on partial hyperbolicity and stable ergodicity, Zur. Lect. Adv. Math., EMS, Zürich, 2004, vi+122 pp. | MR | Zbl

[7] Bonatti Ch., Díaz L. J., Viana M., Dynamics beyond uniform hyperbolicity: A global geometric and probabilistic perspective, Encyclopaedia Math. Sci., 102, Springer, Berlin, 2005, xviii+384 pp. | MR | Zbl

[8] Kuznetsov S. P., “Example of a physical system with a hyperbolic attractor of the Smale – Williams type”, Phys. Rev. Lett., 95:14 (2005), 144101, 4 pp. | DOI

[9] Kuznetsov S. P., Seleznev E. P., “Strange attractor of Smale – Williams type in the chaotic dynamics of a physical system”, J. Exp. Theor. Phys., 102:2 (2006), 355–364 | DOI | MR

[10] Isaeva O. B., Jalnine A. Yu., Kuznetsov S. P., “Arnold's cat map dynamics in a system of coupled nonautonomous van der Pol oscillators”, Phys. Rev. E, 74:4 (2006), 046207, 5 pp. | DOI

[11] Kuznetsov S. P., Pikovsky A., “Autonomous coupled oscillators with hyperbolic strange attractors”, Phys. D, 232:2 (2007), 87–102 | DOI | MR | Zbl

[12] Kuznetsov S. P., “Example of blue sky catastrophe accompanied by a birth of Smale – Williams attractor”, Regul. Chaotic Dyn., 15:2–3 (2010), 348–353 | DOI | MR | Zbl

[13] Kuznetsov S. P., Dinamicheskii khaos i giperbolicheskie attraktory: ot matematiki k fizike, IKI, Moskva – Izhevsk, 2013, 488 pp.; Kuznetsov S. P., Hyperbolic chaos: A physicist's view, Springer, Berlin, 2012, 336 pp. | Zbl

[14] Kuznetsov S. P., “Dynamical chaos and uniformly hyperbolic attractors: From mathematics to physics”, Phys. Uspekhi, 54:2 (2011), 119–144 | DOI | DOI

[15] Kuznetsov S. P., “Plykin type attractor in electronic device simulated in MULTISIM”, Chaos, 21:4 (2011), 043105, 10 pp. | DOI | Zbl

[16] Isaeva O. B., Kuznetsov S. P., Mosekilde E., “Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation”, Phys. Rev. E., 84:1 (2011), 016228, 10 pp. | DOI

[17] Isaeva O. B., Kuznetsov A. S., Kuznetsov S. P., “Hyperbolic chaos in parametric oscillations of a string”, Nelin. Dinam., 9:1 (2013), 3–10 (Russian)

[18] Kuznetsov S. P., Kuznetsov A. S., Kruglov V. P., “Hyperbolic chaos in systems with parametrically excited patterns of standing waves”, Nelin. Dinam., 10:3 (2014), 265–277 (Russian)

[19] Jalnine A. Yu., “Hyperbolic and non-hyperbolic chaos in a pair of coupled alternately excited FitzHugh – Nagumo systems”, Commun. Nonlinear Sci. Numer. Simul., 23:1–3 (2015), 202–208 | DOI | MR

[20] by Kuznetsov S. P. “Some mechanical systems manifesting robust chaos”, Nonlinear Dynamics Mobile Robotics, 1:1 (2013), 3–22

[21] Borisov A. V., Kazakov A. O., Kuznetsov S. P., “Nonlinear dynamics of the rattleback: A nonholonomic model”, Physics-Uspekhi, 57:5 (2014), 453–460 | DOI | DOI

[22] Kuznetsov S. P., “Motion of a falling card in a fluid: Finite-dimensional models, complex phenomena, and nonlinear dynamics”, Nelin. Dinam., 11:1 (2015), 3–49 (Russian)

[23] Borisov A. V., Mamaev I. S., “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118, 7 pp. | DOI | MR | Zbl

[24] Kuznetsov S. P., Jalnine A. Y., Sataev I. R., Sedova J. V., “Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback”, Nelin. Dinam., 8:4 (2012), 735–762 (Russian)

[25] Tërston U. P., Uiks D. R., “Matematiki trekhmernykh mnogoobrazii”, V mire nauki, 1984, no. 9, 74–88

[26] Kozlov V. V., “Topological obstacles to the integrability of natural mechanical systems”, Sov. Math. Dokl., 20 (1979), 1413–1415 | MR | Zbl

[27] Anosov D. V., “Geodesic flows on closed Riemannian manifolds of negative curvature”, Trudy Mat. Inst. Steklov, 90 (1967), 3–210 (Russian) | MR

[28] Balazs N. L., Voros A., “Chaos on the pseudosphere”, Phys. Rep., 143:3 (1986), 109–240 | DOI | MR

[29] Hunt T. J., MacKay R. S., “Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor”, Nonlinearity, 16:4 (2003), 1499–1510 | DOI | MR | Zbl

[30] Magalhães M. L. S., Pollicott M., “Geometry and dynamics of planar linkages”, Comm. Math. Phys., 317:3 (2013), 615–634 | DOI | MR | Zbl

[31] Kourganoff M., Anosov geodesic flows, billiards and linkages, 2015, 27 pp., arXiv: 1503.04305 [math.DS] | MR

[32] Kozlov V. V., “Closed orbits and the chaotic dynamics of a charge in a periodic electromagnetic field”, Regul. Chaotic Dyn., 2:1 (1997), 3–12 (Russian) | MR | Zbl

[33] Kuznetsov S. P., “Chaos in the system of three coupled rotators: From Anosov dynamics to hyperbolic attractor”, Izv. Saratov. Univ. N. S. Ser. Fizika, 15:2 (2015), 5–17 (Russian)

[34] Lai Y.-Ch., Grebogi C., Yorke J. A., Kan I., How often are chaotic saddles nonhyperbolic?, Nonlinearity, 6:5 (1993), 779–798 | DOI | MR

[35] Anishchenko V. S., Kopeikin A. S., Kurths J., Vadivasova T. E., Strelkova G. I., “Studying hyperbolicity in chaotic systems”, Phys. Lett. A, 270:6 (2000), 301–307 | DOI | MR | Zbl

[36] Ginelli F., Poggi P., Turchi A., Chaté H., Livi R., Politi A., “Characterizing dynamics with covariant Lyapunov vectors”, Phys. Rev. Lett., 99:13 (2007), 130601, 4 pp. | DOI

[37] Kuptsov P. V., “Fast numerical test of hyperbolic chaos”, Phys. Rev. E, 85:1 (2012), 015203, 4 pp. | DOI | MR

[38] Gantmacher F. R., Lectures in analytical mechanics, Mir, Moscow, 1975, 264 pp.

[39] Goldstein H., Poole Ch. P. Jr., Safko J. L., Classical mechanics, 3rd ed., Addison-Wesley, Boston, Mass., 2001, 680 pp. | MR

[40] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them: P. 1: Theory; P. 2: Numerical application”, Meccanica, 15 (1980), 9–30 | DOI

[41] Jenkins G. M., Watts D. G., Spectral analysis and its applications, Holden-Day, San Francisco, Calif., 1968, xviii+525 pp. | MR | Zbl

[42] Rössler O. E., “An equation for hyperchaos”, Phys. Lett. A, 71:2 (1979), 155–157 | DOI | MR | Zbl

[43] Sinaĭ Ya. G., “The stochasticity of dynamical systems: Selected translations”, Selecta Math. Soviet., 1:1 (1981), 100–119 | MR

[44] Kuznetsov S. P., Sataev I. R., “Verification of hyperbolicity conditions for a chaotic attractor in a system of coupled nonautonomous van der Pol oscillators”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 14:5 (2006), 3–29 (Russian) | Zbl