Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_1_a6, author = {V. A. Tenenev and E. V. Vetchanin and L. Ilaletdinov}, title = {Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid}, journal = {Russian journal of nonlinear dynamics}, pages = {99--120}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a6/} }
TY - JOUR AU - V. A. Tenenev AU - E. V. Vetchanin AU - L. Ilaletdinov TI - Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid JO - Russian journal of nonlinear dynamics PY - 2016 SP - 99 EP - 120 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a6/ LA - ru ID - ND_2016_12_1_a6 ER -
%0 Journal Article %A V. A. Tenenev %A E. V. Vetchanin %A L. Ilaletdinov %T Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid %J Russian journal of nonlinear dynamics %D 2016 %P 99-120 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a6/ %G ru %F ND_2016_12_1_a6
V. A. Tenenev; E. V. Vetchanin; L. Ilaletdinov. Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 99-120. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a6/
[1] Kirkhgof G., Mekhanika. Lektsii po matematicheskoi fizike, AN SSSR, Moskva, 1962, 404 pp.; Kirchhoff G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Teubner, Leipzig, 1876, 466 pp.
[2] Steklov V. A., “One case of motion of heavy rigid body in a fluid”, Tr. Otdel. Fiz. Nauk Obsch. Lyubit. Estestvozn., 7:2 (1895), 10–21 (Russian)
[3] Lamb G., Gidrodinamika, OGIZ, Moskva – Leningrad, 1947, 929 pp.; Lamb H., Hydrodynamics, 6th ed., Dover, New York, 1945, 768 pp.
[4] Steklov V. A., “On the motion of a rigid body in a fluid: 1”, Soobshch. Kharkov. Mat. Obshch., Ser. 2, 2:5–6 (1891), 209–235 (Russian)
[5] Chaplygin S. A., “On the motion of heavy bodies in an incompressible fluid”, Complete works: Vol. 1, Akad. Nauk SSSR, Moscow – Leningrad, 1933, 133–150 (Russian)
[6] Borisov A. V., Kozlov V. V., Mamaev I. S., “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl
[7] Mougin G., Magnaudet J., “The generalized Kirchhoff equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow”, Int. J. Multiphas. Flow, 28:11 (2002), 1837–1851 | DOI | Zbl
[8] Childress S., Spagnolie S. E., Tokieda T., “A bug on a raft: Recoil locomotion in a viscous fluid”, J. Fluid Mech., 669 (2011), 527–556 | DOI | MR | Zbl
[9] Ramodanov S. M., Tenenev V. A., “Motion of a body with variable distribution of mass in a boundless viscous liquid”, Nelin. Dinam., 7:3 (2011), 635–647 (Russian) | MR
[10] Vetchanin E. V., Mamaev I. S., Tenenev V. A., “The motion of a body with variable mass geometry in a viscous fluid”, Nelin. Dinam., 8:4 (2012), 815–836 (Russian)
[11] Vetchanin E. V., Mamaev I. S., Tenenev V. A., “The self-propulsion of a body with moving internal masses in a viscous fluid”, Regul. Chaotic Dyn., 18:1–2 (2013), 100–117 | DOI | MR | Zbl
[12] Maxwell J. K., “On a particular case of descent of a heavy body in a resisting medium”, Cambridge and Dublin Math. Journ., 9 (1854), 145–148
[13] Kozlov V. V., “On the problem of fall of a rigid body in a resisting medium”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1990, no. 1, 79–86 (Russian) | Zbl
[14] Tanabe Y., Kaneko K., “Behavior of a falling paper”, Phys. Rev. Lett., 73:10 (1994), 1372–1375 | DOI | MR
[15] Belmonte A., Eisenberg H., Moses E., “From flutter to tumble: Inertial drag and froude similarity in falling paper”, Phys. Rev. Lett., 81:2 (1998), 345–348 | DOI
[16] Andersen A., Pesavento U., Wang Z. J., “Analysis of transitions between fluttering, tumbling and steady descent of falling cards”, J. Fluid Mech., 541 (2005), 91–104 | DOI | MR | Zbl
[17] Kuznetsov S. P., “Motion of a falling card in a fluid: Finite-dimensional models, complex phenomena, and nonlinear dynamics”, Nelin. Dinam., 11:1 (2015), 3–49 (Russian)
[18] Leipnik R. B., Newton T. A., “Double strange attractors in rigid body motion with linear feedback control”, Phys. Lett. A, 86:2 (1981), 63–67 | DOI | MR
[19] Akulenko L. D., Leshchenko D. D., Chernous'ko F. L., “Rapid motion around a fixed point of a heavy rigid body in resisting medium”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1982, no. 3, 5–13 (Russian) | MR
[20] Chernous'ko F. L., Akulenko L. D., Leshchenko D. D., Evolution of motions of rigid body about its center of mass, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2015 (Russian)
[21] Iñarrea M., Lanchares V., “Chaotic pitch motion of an asymmetric non-rigid spacecraft with viscous drag in circular orbit”, Int. J. Nonlinear Mech., 41:1 (2006), 86–100 | DOI
[22] Koshlyakov V. N., Problems of rigid body dynamics and applied gyroscope theory: Analytical methods, Nauka, Moscow, 1985 (Russian) | MR
[23] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, Moskva, 1974, 712 pp.; Schlichting H., Gersten K., Krause E., Oertel H. Jr., Grenzschicht-Theorie, 10th ed., Springer, Berlin, 2006, 799 pp. | MR
[24] Voinov O. V., “Inertial motion of a body in an ideal fluid from the state at rest”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 699–703 | DOI | Zbl
[25] Borisov A. V., Mamaev I. S., Dynamics of a rigid body: Hamiltonian methods, integrability, chaos, 2nd ed., R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2005 (Russian) | MR
[26] Markeev A. P., Theoretical mechanics, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2007 (Russian) | MR
[27] Deryabin M. V., “On the stability of uniformly accelerated rotations of a heavy rigid body in an ideal fluid”, Mech. Solids, 37:5 (2002), 23–26
[28] Borisov A. V., Kozlov V. V., Mamaev I. S., “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl
[29] Hairer E., Nørsett S. P., Wanner G., Solving ordinary differential equations: Vol. 1. Nonstiff problems, Springer Ser. Comput. Math., 8, 2nd ed., Springer, Berlin, 1993, xvi+528 pp. | MR
[30] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Inostrannaya literatura, Moskva, 1958, 475 pp.; Coddington E., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955, 429 pp. | MR | Zbl
[31] Hénon M., “On the numerical computation of Poincaré maps”, Phys. D, 5:2–3 (1982), 412–414 | MR
[32] Kuznetsov S. P., Dynamical chaos, 2nd ed., Fizmatlit, Moscow, 2006 (Russian)
[33] Borisov A. V., Kazakov A. O., Sataev I. R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733 | DOI | MR | Zbl
[34] Borisov A. V., Kazakov A. O., Kuznetsov S. P., “Nonlinear dynamics of the rattleback: A nonholonomic model”, Physics–Uspekhi, 57:5 (2014), 453–460 | DOI