Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 99-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the process of the free fall of a three-bladed screw in a fluid. The investigation is performed within the framework of theories of an ideal fluid and a viscous fluid. For the case of an ideal fluid the stability of uniformly accelerated rotations (the Steklov solutions) is studied. A phenomenological model of viscous forces and torques is derived for investigation of the motion in a viscous fluid. A chart of Lyapunov exponents and bifucation diagrams are computed. It is shown that, depending on the system parameters, quasiperiodic and chaotic regimes of motion are possible. Transition to chaos occurs through cascade of period-doubling bifurcations.
Keywords: ideal fluid, motion of a rigid body, dynamical system, stability of motion, chart of Lyapunov exponents.
Mots-clés : viscous fluid, bifurcations
@article{ND_2016_12_1_a6,
     author = {V. A. Tenenev and E. V. Vetchanin and L. Ilaletdinov},
     title = {Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid},
     journal = {Russian journal of nonlinear dynamics},
     pages = {99--120},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a6/}
}
TY  - JOUR
AU  - V. A. Tenenev
AU  - E. V. Vetchanin
AU  - L. Ilaletdinov
TI  - Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 99
EP  - 120
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a6/
LA  - ru
ID  - ND_2016_12_1_a6
ER  - 
%0 Journal Article
%A V. A. Tenenev
%A E. V. Vetchanin
%A L. Ilaletdinov
%T Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid
%J Russian journal of nonlinear dynamics
%D 2016
%P 99-120
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a6/
%G ru
%F ND_2016_12_1_a6
V. A. Tenenev; E. V. Vetchanin; L. Ilaletdinov. Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 99-120. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a6/

[1] Kirkhgof G., Mekhanika. Lektsii po matematicheskoi fizike, AN SSSR, Moskva, 1962, 404 pp.; Kirchhoff G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Teubner, Leipzig, 1876, 466 pp.

[2] Steklov V. A., “One case of motion of heavy rigid body in a fluid”, Tr. Otdel. Fiz. Nauk Obsch. Lyubit. Estestvozn., 7:2 (1895), 10–21 (Russian)

[3] Lamb G., Gidrodinamika, OGIZ, Moskva – Leningrad, 1947, 929 pp.; Lamb H., Hydrodynamics, 6th ed., Dover, New York, 1945, 768 pp.

[4] Steklov V. A., “On the motion of a rigid body in a fluid: 1”, Soobshch. Kharkov. Mat. Obshch., Ser. 2, 2:5–6 (1891), 209–235 (Russian)

[5] Chaplygin S. A., “On the motion of heavy bodies in an incompressible fluid”, Complete works: Vol. 1, Akad. Nauk SSSR, Moscow – Leningrad, 1933, 133–150 (Russian)

[6] Borisov A. V., Kozlov V. V., Mamaev I. S., “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl

[7] Mougin G., Magnaudet J., “The generalized Kirchhoff equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow”, Int. J. Multiphas. Flow, 28:11 (2002), 1837–1851 | DOI | Zbl

[8] Childress S., Spagnolie S. E., Tokieda T., “A bug on a raft: Recoil locomotion in a viscous fluid”, J. Fluid Mech., 669 (2011), 527–556 | DOI | MR | Zbl

[9] Ramodanov S. M., Tenenev V. A., “Motion of a body with variable distribution of mass in a boundless viscous liquid”, Nelin. Dinam., 7:3 (2011), 635–647 (Russian) | MR

[10] Vetchanin E. V., Mamaev I. S., Tenenev V. A., “The motion of a body with variable mass geometry in a viscous fluid”, Nelin. Dinam., 8:4 (2012), 815–836 (Russian)

[11] Vetchanin E. V., Mamaev I. S., Tenenev V. A., “The self-propulsion of a body with moving internal masses in a viscous fluid”, Regul. Chaotic Dyn., 18:1–2 (2013), 100–117 | DOI | MR | Zbl

[12] Maxwell J. K., “On a particular case of descent of a heavy body in a resisting medium”, Cambridge and Dublin Math. Journ., 9 (1854), 145–148

[13] Kozlov V. V., “On the problem of fall of a rigid body in a resisting medium”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1990, no. 1, 79–86 (Russian) | Zbl

[14] Tanabe Y., Kaneko K., “Behavior of a falling paper”, Phys. Rev. Lett., 73:10 (1994), 1372–1375 | DOI | MR

[15] Belmonte A., Eisenberg H., Moses E., “From flutter to tumble: Inertial drag and froude similarity in falling paper”, Phys. Rev. Lett., 81:2 (1998), 345–348 | DOI

[16] Andersen A., Pesavento U., Wang Z. J., “Analysis of transitions between fluttering, tumbling and steady descent of falling cards”, J. Fluid Mech., 541 (2005), 91–104 | DOI | MR | Zbl

[17] Kuznetsov S. P., “Motion of a falling card in a fluid: Finite-dimensional models, complex phenomena, and nonlinear dynamics”, Nelin. Dinam., 11:1 (2015), 3–49 (Russian)

[18] Leipnik R. B., Newton T. A., “Double strange attractors in rigid body motion with linear feedback control”, Phys. Lett. A, 86:2 (1981), 63–67 | DOI | MR

[19] Akulenko L. D., Leshchenko D. D., Chernous'ko F. L., “Rapid motion around a fixed point of a heavy rigid body in resisting medium”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1982, no. 3, 5–13 (Russian) | MR

[20] Chernous'ko F. L., Akulenko L. D., Leshchenko D. D., Evolution of motions of rigid body about its center of mass, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2015 (Russian)

[21] Iñarrea M., Lanchares V., “Chaotic pitch motion of an asymmetric non-rigid spacecraft with viscous drag in circular orbit”, Int. J. Nonlinear Mech., 41:1 (2006), 86–100 | DOI

[22] Koshlyakov V. N., Problems of rigid body dynamics and applied gyroscope theory: Analytical methods, Nauka, Moscow, 1985 (Russian) | MR

[23] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, Moskva, 1974, 712 pp.; Schlichting H., Gersten K., Krause E., Oertel H. Jr., Grenzschicht-Theorie, 10th ed., Springer, Berlin, 2006, 799 pp. | MR

[24] Voinov O. V., “Inertial motion of a body in an ideal fluid from the state at rest”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 699–703 | DOI | Zbl

[25] Borisov A. V., Mamaev I. S., Dynamics of a rigid body: Hamiltonian methods, integrability, chaos, 2nd ed., R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2005 (Russian) | MR

[26] Markeev A. P., Theoretical mechanics, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2007 (Russian) | MR

[27] Deryabin M. V., “On the stability of uniformly accelerated rotations of a heavy rigid body in an ideal fluid”, Mech. Solids, 37:5 (2002), 23–26

[28] Borisov A. V., Kozlov V. V., Mamaev I. S., “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl

[29] Hairer E., Nørsett S. P., Wanner G., Solving ordinary differential equations: Vol. 1. Nonstiff problems, Springer Ser. Comput. Math., 8, 2nd ed., Springer, Berlin, 1993, xvi+528 pp. | MR

[30] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Inostrannaya literatura, Moskva, 1958, 475 pp.; Coddington E., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955, 429 pp. | MR | Zbl

[31] Hénon M., “On the numerical computation of Poincaré maps”, Phys. D, 5:2–3 (1982), 412–414 | MR

[32] Kuznetsov S. P., Dynamical chaos, 2nd ed., Fizmatlit, Moscow, 2006 (Russian)

[33] Borisov A. V., Kazakov A. O., Sataev I. R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733 | DOI | MR | Zbl

[34] Borisov A. V., Kazakov A. O., Kuznetsov S. P., “Nonlinear dynamics of the rattleback: A nonholonomic model”, Physics–Uspekhi, 57:5 (2014), 453–460 | DOI