Oscillations of a solid parallelepiped on a supported base
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 91-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analytical solution of the problem of forced oscillation of the solid parallelepiped on a horizontal base is presented. It is assumed that the slippage between the body and the base is absent, and the base moves harmonically in a horizontal direction. It is also assumed that the height of the box is much larger than the width. The dissipation of impact is taken into account in the framework of Newton’s hypothesis. The forced oscillation modes of parallelepiped corresponding to the main and two subharmonic resonances are found by using the averaging method. The results are shown in the form of amplitude-frequency characteristics.
Keywords: supported plane, nonlinear oscillations, averaging method.
@article{ND_2016_12_1_a5,
     author = {A. I. Munitsyn and M. A. Munitsyna},
     title = {Oscillations of a solid parallelepiped on a supported base},
     journal = {Russian journal of nonlinear dynamics},
     pages = {91--98},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a5/}
}
TY  - JOUR
AU  - A. I. Munitsyn
AU  - M. A. Munitsyna
TI  - Oscillations of a solid parallelepiped on a supported base
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 91
EP  - 98
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a5/
LA  - ru
ID  - ND_2016_12_1_a5
ER  - 
%0 Journal Article
%A A. I. Munitsyn
%A M. A. Munitsyna
%T Oscillations of a solid parallelepiped on a supported base
%J Russian journal of nonlinear dynamics
%D 2016
%P 91-98
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a5/
%G ru
%F ND_2016_12_1_a5
A. I. Munitsyn; M. A. Munitsyna. Oscillations of a solid parallelepiped on a supported base. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 91-98. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a5/

[1] Housner J., “The behavior or inverted pendulum structures during earthquakes”, B. Seismol. Soc. Am., 53:2 (1963), 403–417

[2] Hogan S. J., “The many steady state responses of a rigid block under harmonic forcing”, Earthquake Eng. Struct. Dyn., 19:7 (1990), 1057–1071 | DOI

[3] Sinopoli A., “Earthquakes and large block monumental structures”, Ann. Geofis., 38:5–6 (1995), 737–751

[4] Prieto F., Lourenco P. B., “On the rocking behavior of rigid object”, Meccanica, 40:2 (2005), 121–133 | DOI | MR | Zbl

[5] Andreaus U., Casini P., “On the rocking-uplifting motion of a rigid block in free and forced motion: Influence of sliding and bouncing”, Acta Mech., 138:3 (1999), 219–241 | DOI | Zbl

[6] Sinopoli A., “Unilaterality and dry friction: A geometric formulation for two-dimensional rigid body dynamics”, Nonlinear Dynam., 12:4 (1997), 343–366 | DOI | MR | Zbl

[7] Lenci S., Rega G., “Optimal control and anti-control of the nonlinear dynamic of a rigid block”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 364:1846 (2006), 2353–2381 | DOI | MR | Zbl

[8] Bogolubov N. N., Mitropolskiy Yu. A., Asymptotic methods in the theory of nonlinear oscillations, Nauka, Moscow, 1974 (Russian) | MR

[9] Babitskiy V. I., Krupenin V. L., Oscillations in highly nonlinear systems, Nauka, Moscow, 1985 (Russian) | MR

[10] Karapetyan A. V., Munitsyna M. A., “The dynamics of the parallelepiped on a horizontal plane vibrating”, Avtomat. i Telemekh., 2015, no. 3, 32–43 (Russian) | MR | Zbl