On the stability of the two-link trajectory of the parabolic Birkhoff billiards
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 75-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the inertial motion of a material point in a planar domain bounded by two coaxial parabolas. Inside the domain the point moves along a straight line, the collisions with the boundary curves are assumed to be perfectly elastic. There is a two-link periodic trajectory, for which the point alternately collides with the boundary parabolas at their vertices, and in the intervals between collisions it moves along the common axis of the parabolas. We study the nonlinear problem of stability of the two-link trajectory of the point.
Keywords: map, canonical transformations, Hamilton system, stability.
@article{ND_2016_12_1_a4,
     author = {A. P. Markeev},
     title = {On the stability of the two-link trajectory of the parabolic {Birkhoff} billiards},
     journal = {Russian journal of nonlinear dynamics},
     pages = {75--90},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a4/}
}
TY  - JOUR
AU  - A. P. Markeev
TI  - On the stability of the two-link trajectory of the parabolic Birkhoff billiards
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 75
EP  - 90
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a4/
LA  - ru
ID  - ND_2016_12_1_a4
ER  - 
%0 Journal Article
%A A. P. Markeev
%T On the stability of the two-link trajectory of the parabolic Birkhoff billiards
%J Russian journal of nonlinear dynamics
%D 2016
%P 75-90
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a4/
%G ru
%F ND_2016_12_1_a4
A. P. Markeev. On the stability of the two-link trajectory of the parabolic Birkhoff billiards. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 75-90. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a4/

[1] Birkhoff G. D., “On the periodic motions of dynamical systems”, Acta Math., 50:1 (1927), 359–379 | DOI | MR | Zbl

[2] Birkgof Dzh. D., Dinamicheskie sistemy, UdGU, Izhevsk, 1999, 408 pp.; Birkhoff G. D., Dynamical systems, AMS Colloquium Publications, 9, AMS, Providence, R.I., 1966, xii+305 pp. | MR

[3] Kozlov V. V., Treshchev D. V., Billiards: A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, AMS, Providence, R.I., 1991, viii+171 pp. | MR | MR | Zbl

[4] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, Moskva, 1999, 768 pp.; Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. | MR | Zbl

[5] Tabachnikov S., Geometriya i billiardy, NITs “Regulyarnaya i khaoticheskaya dinamika”, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2011, 180 pp.; Tabachnikov S., Geometry and billiards, Stud. Math. Libr., 30, AMS, Providence, R.I., 2005, xii+176 pp. | DOI | MR | Zbl

[6] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Fizmatlit, Moskva, 1972, 456 pp. ; Babich V. M., Buldyrev V. S., Short-wavelength diffraction theory: Asymptotic methods, Springer Series on Wave Phenomena, 4, Springer, Berlin, 1991, 445 pp. | MR | DOI | MR

[7] Ivanov A. P., Dynamics of systems with mechanical collisions, Int. Programm of Education, Moscow, 1997 (Russian) | MR

[8] Treshchev D. V., “About the question on periodic trajectories in Birkhoff’s billiards”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1988, no. 2, 44–50 (Russian)

[9] Kozlov V. V., Chigur I. I., “On the stability of periodic trajectories of a three-dimensional billiard”, J. Appl. Math. Mech., 55:5 (1991), 576–580 | DOI | MR | Zbl

[10] Abdrakhmanov A. M., “On the stability of two-link periodic trajectories in Birkhoff billiards on the two-dimensional surfaces of constant curvature”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1991, no. 4, 88–90 (Russian) | MR

[11] Kozlov V. V., “Two-link billiard trajectories: Extremal properties and stability”, J. Appl. Math. Mech., 64:6 (2000), 903–907 | DOI | MR | Zbl

[12] Kozlov V. V., “The problem of the stability of two-link trajectories of a multidimensional Birkhoff billiard”, Proc. Steklov Inst. Math., 273:1 (2011), 196–213 | DOI | MR | Zbl

[13] Markeev A. A., Stability of motion in some problems of dynamics of systems with unilateral constraints, PhD Thesis, Moscow State Univ., Moscow, 1995 (Russian)

[14] Kamphorst S. O., Pinto-de-Carvalho S., “The first Birkhoff coefficient and the stability of $2$-periodic orbits on billiards”, Experiment. Math., 14:3 (2005), 299–306 | DOI | MR | Zbl

[15] Treschev D., “Billiard map and rigid rotation”, Phys. D, 255 (2013), 31–34 | DOI | MR | Zbl

[16] Treschev D. V., “On a conjugacy problem in billiard dynamics”, Proc. Steklov Inst. Math., 289 (2015), 291–299 | DOI | MR | Zbl

[17] Markeev A. P., “On the fixed points stability for the area-preserving maps”, Nelin. Dinam., 11:3 (2015), 503–545 (Russian) | MR | Zbl

[18] Puankare A., Izbrannye trudy: T. 2: Novye metody nebesnoi mekhaniki, Nauka, Moskva, 1972, 999 pp.; Poincaré H., Les méthodes nouvelles de la mécanique céleste: Vol. 3. Invariants intégraux. Solutions périodiques du deuxième genre. Solutions doublement asymptotiques, Gauthier-Villars, Paris, 1899, 430 pp.

[19] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, Moskva, 1966, 532 pp. ; Malkin I. G., Theory of stability of motion, Univ. of Michigan, Ann Arbor, Mich., 1958, 456 pp. | MR

[20] Markeyev A. P., “A method for analytically representing area-preserving mappings”, J. Appl. Math. Mech., 78:5 (2014), 435–444 | DOI | MR

[21] Markeev A. P., “Stability of equilibrium states of Hamiltonian systems: A method of investigation”, Mech. Solids, 39:6 (2004), 1–8

[22] Stepin A. M., “Integrable Hamiltonian systems: 1, 2”, Qualitative methods of investigating nonlinear differential equations and nonlinear oscillations, ed. Yu. A. Mitropolsky, Inst. Matem. AN USSR, Kiev, 1981, 116–170 (Russian) | MR

[23] Ramani A., Kalliterakis A., Grammaticos B., Dorizzi B., “Integrable curvilinear billiards”, Phys. Lett. A, 115:1–2 (1986), 25–28 | DOI | MR

[24] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, Moskva, 1973, 167 pp.; Moser J. K., Lectures on Hamiltonian systems, Mem. Amer. Math. Soc., 81, AMS, Providence, R.I., 1968, 60 pp. | MR

[25] Zigel K., Mozer K., Lektsii po nebesnoi mekhanike, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 384 pp.; Siegel C. L., Moser J. K., Lectures on celestial mechanics, Springer, New York, 1971, xii+290 pp. | MR | Zbl

[26] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, Moskva, 2002, 414 pp.; Arnol'd V. I., Kozlov V. V., Neïshtadt A. I., Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, 505 pp. | MR | Zbl