On the stability of the two-link trajectory of the parabolic Birkhoff billiards
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 75-90

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the inertial motion of a material point in a planar domain bounded by two coaxial parabolas. Inside the domain the point moves along a straight line, the collisions with the boundary curves are assumed to be perfectly elastic. There is a two-link periodic trajectory, for which the point alternately collides with the boundary parabolas at their vertices, and in the intervals between collisions it moves along the common axis of the parabolas. We study the nonlinear problem of stability of the two-link trajectory of the point.
Keywords: map, canonical transformations, Hamilton system, stability.
@article{ND_2016_12_1_a4,
     author = {A. P. Markeev},
     title = {On the stability of the two-link trajectory of the parabolic {Birkhoff} billiards},
     journal = {Russian journal of nonlinear dynamics},
     pages = {75--90},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a4/}
}
TY  - JOUR
AU  - A. P. Markeev
TI  - On the stability of the two-link trajectory of the parabolic Birkhoff billiards
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 75
EP  - 90
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a4/
LA  - ru
ID  - ND_2016_12_1_a4
ER  - 
%0 Journal Article
%A A. P. Markeev
%T On the stability of the two-link trajectory of the parabolic Birkhoff billiards
%J Russian journal of nonlinear dynamics
%D 2016
%P 75-90
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a4/
%G ru
%F ND_2016_12_1_a4
A. P. Markeev. On the stability of the two-link trajectory of the parabolic Birkhoff billiards. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 75-90. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a4/