Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_1_a4, author = {A. P. Markeev}, title = {On the stability of the two-link trajectory of the parabolic {Birkhoff} billiards}, journal = {Russian journal of nonlinear dynamics}, pages = {75--90}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a4/} }
A. P. Markeev. On the stability of the two-link trajectory of the parabolic Birkhoff billiards. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 75-90. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a4/
[1] Birkhoff G. D., “On the periodic motions of dynamical systems”, Acta Math., 50:1 (1927), 359–379 | DOI | MR | Zbl
[2] Birkgof Dzh. D., Dinamicheskie sistemy, UdGU, Izhevsk, 1999, 408 pp.; Birkhoff G. D., Dynamical systems, AMS Colloquium Publications, 9, AMS, Providence, R.I., 1966, xii+305 pp. | MR
[3] Kozlov V. V., Treshchev D. V., Billiards: A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, AMS, Providence, R.I., 1991, viii+171 pp. | MR | MR | Zbl
[4] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, Moskva, 1999, 768 pp.; Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. | MR | Zbl
[5] Tabachnikov S., Geometriya i billiardy, NITs “Regulyarnaya i khaoticheskaya dinamika”, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2011, 180 pp.; Tabachnikov S., Geometry and billiards, Stud. Math. Libr., 30, AMS, Providence, R.I., 2005, xii+176 pp. | DOI | MR | Zbl
[6] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Fizmatlit, Moskva, 1972, 456 pp. ; Babich V. M., Buldyrev V. S., Short-wavelength diffraction theory: Asymptotic methods, Springer Series on Wave Phenomena, 4, Springer, Berlin, 1991, 445 pp. | MR | DOI | MR
[7] Ivanov A. P., Dynamics of systems with mechanical collisions, Int. Programm of Education, Moscow, 1997 (Russian) | MR
[8] Treshchev D. V., “About the question on periodic trajectories in Birkhoff’s billiards”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1988, no. 2, 44–50 (Russian)
[9] Kozlov V. V., Chigur I. I., “On the stability of periodic trajectories of a three-dimensional billiard”, J. Appl. Math. Mech., 55:5 (1991), 576–580 | DOI | MR | Zbl
[10] Abdrakhmanov A. M., “On the stability of two-link periodic trajectories in Birkhoff billiards on the two-dimensional surfaces of constant curvature”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1991, no. 4, 88–90 (Russian) | MR
[11] Kozlov V. V., “Two-link billiard trajectories: Extremal properties and stability”, J. Appl. Math. Mech., 64:6 (2000), 903–907 | DOI | MR | Zbl
[12] Kozlov V. V., “The problem of the stability of two-link trajectories of a multidimensional Birkhoff billiard”, Proc. Steklov Inst. Math., 273:1 (2011), 196–213 | DOI | MR | Zbl
[13] Markeev A. A., Stability of motion in some problems of dynamics of systems with unilateral constraints, PhD Thesis, Moscow State Univ., Moscow, 1995 (Russian)
[14] Kamphorst S. O., Pinto-de-Carvalho S., “The first Birkhoff coefficient and the stability of $2$-periodic orbits on billiards”, Experiment. Math., 14:3 (2005), 299–306 | DOI | MR | Zbl
[15] Treschev D., “Billiard map and rigid rotation”, Phys. D, 255 (2013), 31–34 | DOI | MR | Zbl
[16] Treschev D. V., “On a conjugacy problem in billiard dynamics”, Proc. Steklov Inst. Math., 289 (2015), 291–299 | DOI | MR | Zbl
[17] Markeev A. P., “On the fixed points stability for the area-preserving maps”, Nelin. Dinam., 11:3 (2015), 503–545 (Russian) | MR | Zbl
[18] Puankare A., Izbrannye trudy: T. 2: Novye metody nebesnoi mekhaniki, Nauka, Moskva, 1972, 999 pp.; Poincaré H., Les méthodes nouvelles de la mécanique céleste: Vol. 3. Invariants intégraux. Solutions périodiques du deuxième genre. Solutions doublement asymptotiques, Gauthier-Villars, Paris, 1899, 430 pp.
[19] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, Moskva, 1966, 532 pp. ; Malkin I. G., Theory of stability of motion, Univ. of Michigan, Ann Arbor, Mich., 1958, 456 pp. | MR
[20] Markeyev A. P., “A method for analytically representing area-preserving mappings”, J. Appl. Math. Mech., 78:5 (2014), 435–444 | DOI | MR
[21] Markeev A. P., “Stability of equilibrium states of Hamiltonian systems: A method of investigation”, Mech. Solids, 39:6 (2004), 1–8
[22] Stepin A. M., “Integrable Hamiltonian systems: 1, 2”, Qualitative methods of investigating nonlinear differential equations and nonlinear oscillations, ed. Yu. A. Mitropolsky, Inst. Matem. AN USSR, Kiev, 1981, 116–170 (Russian) | MR
[23] Ramani A., Kalliterakis A., Grammaticos B., Dorizzi B., “Integrable curvilinear billiards”, Phys. Lett. A, 115:1–2 (1986), 25–28 | DOI | MR
[24] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, Moskva, 1973, 167 pp.; Moser J. K., Lectures on Hamiltonian systems, Mem. Amer. Math. Soc., 81, AMS, Providence, R.I., 1968, 60 pp. | MR
[25] Zigel K., Mozer K., Lektsii po nebesnoi mekhanike, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 384 pp.; Siegel C. L., Moser J. K., Lectures on celestial mechanics, Springer, New York, 1971, xii+290 pp. | MR | Zbl
[26] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, Moskva, 2002, 414 pp.; Arnol'd V. I., Kozlov V. V., Neïshtadt A. I., Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, 505 pp. | MR | Zbl