From quasiharmonic oscillations to neural spikes and bursts: a variety of hyperbolic chaotic regimes based on Smale – Williams attractor
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 53-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider a family of coupled self-oscillatory systems presented by pairs of coupled van der Pol generators and FitzHugh–Nagumo neural models, with the parameters being periodically modulated in anti-phase, so that the subsystems undergo alternate excitation with a successive transmission of the phase of oscillations from one subsystem to another. It is shown that, due to the choice of the parameter modulation and coupling methods, one can observe a whole spectrum of robust chaotic dynamical regimes, taking the form ranging from quasiharmonic ones (with a chaotically floating phase) to the well-defined neural oscillations, which represent a sequence of amplitude bursts, in which the phase dynamics of oscillatory spikes is described by a chaotic mapping of Bernoulli type. It is also shown that 4D maps arising in a stroboscopic Poincaré section of the model flow systems universally possess a hyperbolic strange attractor of the Smale–Williams type. The results are confirmed by analysis of phase portraits and time series, by numerical calculation of Lyapunov exponents and their parameter dependencies, as well as by direct computation of the distributions of angles between stable and unstable tangent subspaces of chaotic trajectories.
Mots-clés : chaos, neurons
Keywords: hyperbolicity, Smale–Williams attractor, FitzHugh–Nagumo model.
@article{ND_2016_12_1_a3,
     author = {A. Yu. Jalnine},
     title = {From quasiharmonic oscillations to neural spikes and bursts: a variety of hyperbolic chaotic regimes based on {Smale} {\textendash} {Williams} attractor},
     journal = {Russian journal of nonlinear dynamics},
     pages = {53--73},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a3/}
}
TY  - JOUR
AU  - A. Yu. Jalnine
TI  - From quasiharmonic oscillations to neural spikes and bursts: a variety of hyperbolic chaotic regimes based on Smale – Williams attractor
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 53
EP  - 73
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a3/
LA  - ru
ID  - ND_2016_12_1_a3
ER  - 
%0 Journal Article
%A A. Yu. Jalnine
%T From quasiharmonic oscillations to neural spikes and bursts: a variety of hyperbolic chaotic regimes based on Smale – Williams attractor
%J Russian journal of nonlinear dynamics
%D 2016
%P 53-73
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a3/
%G ru
%F ND_2016_12_1_a3
A. Yu. Jalnine. From quasiharmonic oscillations to neural spikes and bursts: a variety of hyperbolic chaotic regimes based on Smale – Williams attractor. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 53-73. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a3/

[1] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc. (N. S.), 73 (1967), 747–817 | DOI | MR | Zbl

[2] Williams R., “Expanding attractors”, Inst. Hautes Études Sci. Publ. Math., 1974, no. 43, 169–203 | DOI | MR

[3] Eckmann J.-P., Ruelle D., “Ergodic theory of chaos and strange attractors”, Rev. Modern Phys., 57:3(1) (1985), 617–656 | DOI | MR | Zbl

[4] Shilnikov L., “Mathematical problems of nonlinear dynamics: A tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7:9 (1997), 1953–2001 | DOI | MR | Zbl

[5] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. | MR | Zbl

[6] Guckenheimer J., Holmes Ph., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, New York, 1983, 453 pp. | MR | Zbl

[7] Kuznetsov S. P., Dynamical chaos and hyperbolic attractors: From mathematics to physics, Institute of Computer Science, Moscow – Izhevsk, 2013 (Russian)

[8] Anishchenko V. S., Astakhov V. V., Neiman A. B., Vadivasova T. E., Schimansky-Geier L., Nonlinear dynamics of chaotic and stochastic systems: Tutorial and modern developments, Springer Series in Synergetics, 2nd ed. serial Springer Series in Synergetics, Springer, Berlin, 2007, 446 pp. | MR | Zbl

[9] Afraĭmovich V. S., Shil'nikov L. P., “Strange attractors and quasiattractors”, Nonlinear dynamics and turbulence, Interaction Mech. Math. Ser., eds. G. I. Barenblatt, G. Iooss, D. D. Joseph, Pitman, Boston, Mass., 1983, 1–34 | MR

[10] Kuznetsov S. P., “Example of a physical system with a hyperbolic attractor of the Smale – Williams type”, Phys. Rev. Lett., 95:14 (2005), 144101, 4 pp. | DOI

[11] Kuznetsov S. P., Pikovsky A., “Autonomous coupled oscillators with hyperbolic strange attractors”, Phys. D, 232:2 (2007), 87–102 | DOI | MR | Zbl

[12] Kuznetsov A. P., Kuznetsov S. P., Pikovski A. S., Turukina L.V., “Chaotic dynamics in the systems of coupling nonautonomous oscillators with resonance and nonresonance communicator of the signal”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:6 (2007), 75–85 (Russian) | Zbl

[13] Kuznetsov S. P., “On the feasibility of a parametric generator of hyperbolic chaos”, JETP, 106:2 (2008), 380–387 | DOI

[14] Kuznetsov S. P., “Hyperbolic strange attractors of physically realizable systems”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 17:4 (2009), 5–34 (Russian)

[15] Turukina L. V., Pikovsky A. S., “Hyperbolic chaos in a system of nonlinear coupled Landau – Stuart oscillators”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 17:2 (2009), 99–113 (Russian)

[16] Kuznetsov A. S., Kuznetsov S. P., Sataev I. R., “Parametric generator of hyperbolic chaos based on two coupled oscillators with nonlinear dissipation”, Tech. Phys., 55:12 (2010), 1707–1715 | DOI

[17] Turukina L. V., Pikovsky A., “Hyperbolic chaos in a system of resonantly coupled weakly nonlinear oscillators”, Phys. Lett. A, 375:11 (2011), 1407–1411 | DOI | MR | Zbl

[18] Kuznetsov S. P., Turukina L. V., “Attractors of Smale – Williams type in periodically kicked model systems”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:5 (2010), 80–92 (Russian) | Zbl

[19] Kuznetsov S. P., Pikovsky A. S., “Hyperbolic chaos in the phase dynamics of a Q-switched oscillator with delayed nonlinear feedbacks”, Europhys. Lett., 84:1 (2008), 10013, 5 pp. | DOI | MR

[20] Kuptsov P. V., Kuznetsov S. P., Pikovsky A., “Hyperbolic chaos of Turing patterns”, Phys. Rev. Lett., 108:19 (2012), 194101, 4 pp. | DOI

[21] Kruglov V. P., Kuznetsov S. P., Pikovsky A., “Attractor of Smale – Williams type in an autonomous distributed system”, Regul. Chaotic Dyn., 19:4 (2014), 483–494 | DOI | MR | Zbl

[22] Kuznetsov A. S., Kuznetsov S. P., “Parametric generation of robust chaos with time-delayed feedback and modulated pump source”, Commun. Nonlinear Sci. Numer. Simul., 18:3 (2013), 728–734 | DOI | MR | Zbl

[23] Isaeva O. B., Kuznetsov A. S., Kuznetsov S. P., “Hyperbolic chaos of standing wave patterns generated parametrically by a modulated pump source”, Phys. Rev. E, 87:4 (2013), 040901(R), 4 pp. | DOI

[24] Arzhanukhina D. S., Kuznetsov S. P., “Robust chaos in autonomous time-delay system”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 22:2 (2014), 36–49 | Zbl

[25] Kuznetsov S. P., Seleznev E. P., “A strange attractor of the Smale – Williams type in the chaotic dynamics of a physical system”, JETP, 102:2 (2006), 355–364 | DOI | MR

[26] Kuznetsov S. P., Ponomarenko V. I., “Realization of a strange attractor of the Smale – Williams type in a radiotechnical delay-feedback oscillator”, Tech. Phys. Lett., 34:9 (2008), 771–773 | DOI

[27] Emel’yanov V. V., Kuznetsov S. P., Ryskin N. M., “Hyperbolic chaos generator based on coupled drift klystrons”, Tech. Phys. Lett., 35:8 (2009), 773–776 | DOI

[28] Isaeva O. B., Kuznetsov S. P., Sataev I. R., “A “saddle–node” bifurcation scenario for birth or destruction of a Smale – Williams solenoid”, Chaos, 22:4 (2012), 043111, 7 pp. | DOI | MR | Zbl

[29] Isaeva O. B., Kuznetsov S. P., Sataev I. R., Pikovsky A., “On a bifurcation scenario of a birth of attractor of Smale – Williams type”, Nelin. Dinam., 9:2 (2013), 267–294 (Russian)

[30] Kuznetsov S. P., Sataev I. R., “Verification of hyperbolicity conditions for a chaotic attractor in a system of coupled nonautonomous van der Pol oscillators”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 14:5 (2006), 3–29 (Russian) | Zbl

[31] Kuznetsov S. P., Sataev I. R., “Hyperbolic attractor in a system of coupled non-autonomous van der Pol oscillators: Numerical test for expanding and contracting cones”, Phys. Lett. A, 365:1–2 (2007), 97–104 | DOI | Zbl

[32] Jalnine A. Yu., Kuznetsov S. P., “Effect of noise in a nonautonomous system of alternately excited oscillators with a hyperbolic strange attractor”, Phys. Rev. E, 77:3 (2008), 036220, 6 pp. | DOI | MR

[33] Kuztetsov S. P., “Example of blue sky catastrophe accompanied by a birth of Smale – Williams attractor”, Regul. Chaotic Dyn., 15:2–3 (2010), 348–353 | DOI | MR

[34] by Isaeva O. B., Kuznetsov S. P., Sataev I. R., Savin D. V., Seleznev E. P. “Hyperbolic chaos and other phenomena of complex dynamics depending on parameters in nonautonomous system of two alternately activated oscillators”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:12 (2015), 1530033, 15 pp. | DOI | MR | Zbl

[35] Kuznetsov S. P., “A non-autonomous flow system with Plykin type attractor”, Commun. Nonlinear Sci. Numer. Simul., 14:9–10 (2009), 3487–3491 | DOI | MR | Zbl

[36] Kuznetsov S. P., “Plykin-type attractor in nonautonomous coupled oscillators”, Chaos, 19:1 (2009), 013114, 10 pp. | DOI | MR | Zbl

[37] Kuznetsov S. P., “An example of a non-autonomous continuous-time system with attractor of Plykin type in the Poincaré map”, Nelin. Dinam., 5:3 (2009), 403–424 (Russian)

[38] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI

[39] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. of the IRE, 50:10 (1962) | DOI

[40] Jalnine A. Yu., “Hyperbolic and non-hyperbolic chaos in a pair of coupled alternately excited FitzHugh – Nagumo systems”, Commun. Nonlinear Sci. Numer. Simul., 23:1–3 (2015), 202–208 | DOI | MR

[41] Schuster H. G., Deterministic chaos: An introduction, 3rd ed., VCH, Weinheim, 1995, 320 pp. | MR | Zbl

[42] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory”, Meccanica, 15:1 (1980), 9–20 | DOI | MR | Zbl

[43] Lai Y.-C., Grebogi C., Yorke J. A., Kan I., How often are chaotic saddles nonhyperbolic?, Nonlinearity, 6:5 (1993), 779–797 | DOI | MR | Zbl

[44] Anishchenko V. S., Kopeikin A. S., Kurths J., Vadivasova T. E., Strelkova G. I., “Studying hyperbolicity in chaotic systems”, Phys. Lett. A, 270:6 (2000), 301–307 | DOI | MR | Zbl

[45] Kuptsov P. V., “Fast numerical test for hyperbolic chaos”, Phys. Rev. E, 85:1 (2012), 015203, 4 | DOI | MR