On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic “figure-eight”
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 31-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Small time-periodic perturbations of an asymmetric Duffing – Van der Pol equation with a homoclinic “figure-eight” of a saddle are considered. Using the Melnikov analytical method and numerical simulations, basic bifurcations associated with the presence of a non-rough homoclinic curve in this equation are studied. In the main parameter plane the bifurcation diagram for the Poincaré map is constructed. Depending on the parameters, the boundaries of attraction basins of stable fixed (periodic) points of the direct (inverse) Poincaré map are investigated. It is ascertained that the transition moment of the fractal dimension of attraction basin boundaries of attractors through the unit may be preceded by the moment of occurrence of the first homoclinic tangency of the invariant curves of the saddle fixed point.
Mots-clés : bifurcations, homoclinic Poincaré structures, fractal dimension
Keywords: attraction basins, sensitive dependence on initial conditions.
@article{ND_2016_12_1_a2,
     author = {O. S. Kostromina},
     title = {On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic {\textquotedblleft}figure-eight{\textquotedblright}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {31--52},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a2/}
}
TY  - JOUR
AU  - O. S. Kostromina
TI  - On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic “figure-eight”
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 31
EP  - 52
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a2/
LA  - ru
ID  - ND_2016_12_1_a2
ER  - 
%0 Journal Article
%A O. S. Kostromina
%T On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic “figure-eight”
%J Russian journal of nonlinear dynamics
%D 2016
%P 31-52
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a2/
%G ru
%F ND_2016_12_1_a2
O. S. Kostromina. On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic “figure-eight”. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 31-52. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a2/

[1] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2002, 560 pp.; Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Appl. Math. Sci., 42, Springer, New York, 1983, xvi+462 pp. | DOI | MR | Zbl

[2] Mun F., Khaoticheskie kolebaniya: Vvodnyi kurs dlya nauchnykh rabotnikov i inzhenerov, Mir, Moskva, 1990, 312 pp. ; Moon F. C., Chaotic vibrations: An introduction for applied scientists and engineers, Wiley-VCH, New York, 2004, 309 pp. | MR | MR

[3] Litvak-Hinenzon A., Rom-Kedar V., “Symmetry-breaking perturbations and strange attractors”, Phys. Rev. E, 55:5 (1997), 4964–4978 | DOI | MR

[4] Ravichandrana V., Chinnathambia V., Rajasekarb S., “Homoclinic bifurcation and chaos in Duffing oscillator driven by an amplitude-modulated force”, Phys. A, 376 (2007), 223–-236 | DOI | MR

[5] Gonchenko S. V., Simó C., Vieiro A., “Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight”, Nonlinearity, 26:3 (2013), 621–678 | DOI | MR | Zbl

[6] Kostromina O. S., Morozov A. D., “On limit cycles in the asymmetric Duffing – van der Pol equation”, Vestn. Nighegorodsk. Univ., 2012, no. 1, 115–121 (Russian)

[7] Morozov A. D., Kostromina O. S., “On periodic perturbations of asymmetric Duffing – Van-der-Pol equation”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:5 (2014), 1450061, 16 pp. | DOI | MR | Zbl

[8] Turaev D. V., “On a case of bifurcations of a contour composed by two homoclinic curves of a saddle”, Methods of qualitative theory of differential equations, ed. E. A. Leontovich-Andronova, Gorky Gos. Univ., Gorky, 1984, 162–175 (Russian) | MR

[9] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike: Ch. 2, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2009, 548 pp.; Shilnikov L. P., Shilnikov A. L., Turaev D., Chua L. O., Methods of qualitative theory in nonlinear dynamics: Part 2, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 5, World Sci., River Edge, N.J., 2001, i–xxiv+393–957 pp. | MR

[10] Kostromina O. S., Morozov A. D., “On time periodic perturbations of two dimensional Hamiltonian systems with a homoclinic “figure-eight””, Vestn. Nighegorodsk. Univ., 2013, no. 1, 177–183 (Russian)

[11] Puankare A., “O probleme trekh tel i ob uravneniyakh dinamiki: Ch. 2”, Izbrannye trudy: T. 2: Novye metody nebesnoi mekhaniki, ed. N. N. Bogolyubov, V. I. Arnold, I. B. Pogrebysskii, Nauka, Moskva, 1972, 359–452 ; Poincaré H., “Sur le problème des trois corps et les équations de la dynamique: P. 2”, Acta Math., 13 (1890), 166–270 | MR | DOI | MR

[12] Shilnikov L. P., “On a Poincaré – Birkhoff problem”, Math. USSR-Sb., 3:3 (1967), 353–371 | DOI

[13] Gavrilov N. K., Shilnikov L. P., “On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve: 1”, Math. USSR-Sb., 17:4 (1972), 467–485 ; Гаврилов Н. К., Шильников Л. П., “О трехмерных динамических системах, близких к системам с негрубой гомоклинической кривой: 2”, Матем. сб., 90:1 (1973), 139–156 | DOI | DOI | MR | MR | Zbl | Zbl

[14] Gavrilov N. K., Shilnikov L. P., “On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve: 2”, Math. USSR-Sb., 19:1 (1973), 139–156 | DOI | DOI | MR | MR | Zbl | Zbl

[15] Morozov A. D., “The complete qualitative investigation of Duffing's equation”, Differ. Equ., 12 (1976), 164–174 | MR | Zbl

[16] by McDonald S. W., Grebogi C., Ott E., Yorke J. A. “Fractal basin boundaries”, Phys. D, 17:2 (1985), 125–153 | DOI | MR | Zbl

[17] Melnikov V. K., “On the stability of the center for time periodic perturbations”, Trans. Moscow Math. Soc., 12 (1963), 1–57 | MR | Zbl

[18] Morozov A. D., Rezonansy, tsikly i khaos v kvazikonservativnykh sistemakh, RKhD, Moskva – Izhevsk, 2005, 420 pp.; Morozov A. D., Quasi-conservative systems: Cycles, resonances and chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., River Edge, N.J., 1999, 325 pp. | MR

[19] Morozov A. D., Dragunov T. N., Visualization and analysis of invariant sets of dynamical systems, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2003 (Russian)

[20] Dragunov T. N., Analysis and visualization of invariant sets of some classes of dynamical systems, PhD Thesis, NNSU, Nighny Novgorod, 2002 (Russian)