Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_1_a2, author = {O. S. Kostromina}, title = {On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic {\textquotedblleft}figure-eight{\textquotedblright}}, journal = {Russian journal of nonlinear dynamics}, pages = {31--52}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a2/} }
TY - JOUR AU - O. S. Kostromina TI - On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic “figure-eight” JO - Russian journal of nonlinear dynamics PY - 2016 SP - 31 EP - 52 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a2/ LA - ru ID - ND_2016_12_1_a2 ER -
%0 Journal Article %A O. S. Kostromina %T On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic “figure-eight” %J Russian journal of nonlinear dynamics %D 2016 %P 31-52 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a2/ %G ru %F ND_2016_12_1_a2
O. S. Kostromina. On the investigation of the bifurcation and chaotic phenomena in the system with a homoclinic “figure-eight”. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 31-52. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a2/
[1] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2002, 560 pp.; Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Appl. Math. Sci., 42, Springer, New York, 1983, xvi+462 pp. | DOI | MR | Zbl
[2] Mun F., Khaoticheskie kolebaniya: Vvodnyi kurs dlya nauchnykh rabotnikov i inzhenerov, Mir, Moskva, 1990, 312 pp. ; Moon F. C., Chaotic vibrations: An introduction for applied scientists and engineers, Wiley-VCH, New York, 2004, 309 pp. | MR | MR
[3] Litvak-Hinenzon A., Rom-Kedar V., “Symmetry-breaking perturbations and strange attractors”, Phys. Rev. E, 55:5 (1997), 4964–4978 | DOI | MR
[4] Ravichandrana V., Chinnathambia V., Rajasekarb S., “Homoclinic bifurcation and chaos in Duffing oscillator driven by an amplitude-modulated force”, Phys. A, 376 (2007), 223–-236 | DOI | MR
[5] Gonchenko S. V., Simó C., Vieiro A., “Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight”, Nonlinearity, 26:3 (2013), 621–678 | DOI | MR | Zbl
[6] Kostromina O. S., Morozov A. D., “On limit cycles in the asymmetric Duffing – van der Pol equation”, Vestn. Nighegorodsk. Univ., 2012, no. 1, 115–121 (Russian)
[7] Morozov A. D., Kostromina O. S., “On periodic perturbations of asymmetric Duffing – Van-der-Pol equation”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:5 (2014), 1450061, 16 pp. | DOI | MR | Zbl
[8] Turaev D. V., “On a case of bifurcations of a contour composed by two homoclinic curves of a saddle”, Methods of qualitative theory of differential equations, ed. E. A. Leontovich-Andronova, Gorky Gos. Univ., Gorky, 1984, 162–175 (Russian) | MR
[9] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike: Ch. 2, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2009, 548 pp.; Shilnikov L. P., Shilnikov A. L., Turaev D., Chua L. O., Methods of qualitative theory in nonlinear dynamics: Part 2, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 5, World Sci., River Edge, N.J., 2001, i–xxiv+393–957 pp. | MR
[10] Kostromina O. S., Morozov A. D., “On time periodic perturbations of two dimensional Hamiltonian systems with a homoclinic “figure-eight””, Vestn. Nighegorodsk. Univ., 2013, no. 1, 177–183 (Russian)
[11] Puankare A., “O probleme trekh tel i ob uravneniyakh dinamiki: Ch. 2”, Izbrannye trudy: T. 2: Novye metody nebesnoi mekhaniki, ed. N. N. Bogolyubov, V. I. Arnold, I. B. Pogrebysskii, Nauka, Moskva, 1972, 359–452 ; Poincaré H., “Sur le problème des trois corps et les équations de la dynamique: P. 2”, Acta Math., 13 (1890), 166–270 | MR | DOI | MR
[12] Shilnikov L. P., “On a Poincaré – Birkhoff problem”, Math. USSR-Sb., 3:3 (1967), 353–371 | DOI
[13] Gavrilov N. K., Shilnikov L. P., “On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve: 1”, Math. USSR-Sb., 17:4 (1972), 467–485 ; Гаврилов Н. К., Шильников Л. П., “О трехмерных динамических системах, близких к системам с негрубой гомоклинической кривой: 2”, Матем. сб., 90:1 (1973), 139–156 | DOI | DOI | MR | MR | Zbl | Zbl
[14] Gavrilov N. K., Shilnikov L. P., “On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve: 2”, Math. USSR-Sb., 19:1 (1973), 139–156 | DOI | DOI | MR | MR | Zbl | Zbl
[15] Morozov A. D., “The complete qualitative investigation of Duffing's equation”, Differ. Equ., 12 (1976), 164–174 | MR | Zbl
[16] by McDonald S. W., Grebogi C., Ott E., Yorke J. A. “Fractal basin boundaries”, Phys. D, 17:2 (1985), 125–153 | DOI | MR | Zbl
[17] Melnikov V. K., “On the stability of the center for time periodic perturbations”, Trans. Moscow Math. Soc., 12 (1963), 1–57 | MR | Zbl
[18] Morozov A. D., Rezonansy, tsikly i khaos v kvazikonservativnykh sistemakh, RKhD, Moskva – Izhevsk, 2005, 420 pp.; Morozov A. D., Quasi-conservative systems: Cycles, resonances and chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., River Edge, N.J., 1999, 325 pp. | MR
[19] Morozov A. D., Dragunov T. N., Visualization and analysis of invariant sets of dynamical systems, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2003 (Russian)
[20] Dragunov T. N., Analysis and visualization of invariant sets of some classes of dynamical systems, PhD Thesis, NNSU, Nighny Novgorod, 2002 (Russian)