Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_1_a1, author = {Yu. V. Morozov}, title = {The limit cycle as a result of global bifurcation in a class of symmetric systems with discontinuous right-hand side}, journal = {Russian journal of nonlinear dynamics}, pages = {17--30}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a1/} }
TY - JOUR AU - Yu. V. Morozov TI - The limit cycle as a result of global bifurcation in a class of symmetric systems with discontinuous right-hand side JO - Russian journal of nonlinear dynamics PY - 2016 SP - 17 EP - 30 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a1/ LA - ru ID - ND_2016_12_1_a1 ER -
%0 Journal Article %A Yu. V. Morozov %T The limit cycle as a result of global bifurcation in a class of symmetric systems with discontinuous right-hand side %J Russian journal of nonlinear dynamics %D 2016 %P 17-30 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a1/ %G ru %F ND_2016_12_1_a1
Yu. V. Morozov. The limit cycle as a result of global bifurcation in a class of symmetric systems with discontinuous right-hand side. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a1/
[1] Rapoport L. B., Morozov Yu. V., “Estimation of attraction domains in wheeled robot control using absolute stability approach”, Proc. of the 17th IFAC World Congress (Seoul, 2008), IFAC Proceedings Volumes, 41, no. 2, 2008, 5903–5908 | DOI | MR
[2] Boltyansky V. G., Mathematical methods of optimal control, Holt, Rinehart Winston, New York, 1971, xiv+272 pp. | MR | MR
[3] Filippov A. F., Differential equations with discontinuous righthand sides: Control systems, Math. Appl., 18, Springer, Dordrecht, 1988, x+304 pp. | MR | MR
[4] Matyukhin V. I., “Stabilization of motion of Lagrange systems in a finite time in the transient process”, Dokl. Phys., 42:4 (1997), 208–211 | MR
[5] Lee E. B., Markus L., Foundations of optimal control theory, Wiley, New York, 1967, 588 pp. | MR | Zbl
[6] di Bernardo M., Pagano D. J., Ponce E., “Nonhyperbolic boundary equilibrium bifurcations in planar Filippov systems: A case study approach”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:5 (2008), 1377–1392 | DOI | MR | Zbl
[7] Barbashin E. A., Tabueva V. A., “Pendulum oscillations with dry friction”, Izv. Vyssh. Uchebn. Zaved. Matem., 1959, no. 5, 48–57 (Russian)
[8] Leonov G. A., Kuznetsov N. V., “Hidden attractors in dynamical systems. From hidden oscillations in Hilbert – Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23:1 (2013), 1330002, 69 pp. | DOI | MR | Zbl