A modified model of coupled pendulums
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 709-720.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a modified system of two pendulums rods of which intersect and slide without any friction. The pendulums are connected by an elastic linear spring and arranged in a fixed vertical plane of the uniform gravity field. We have shown that there are symmetric and asymmetric equilibrium solutions with respect to the vertical axis. It is revealed that the stability of the model depends on two parameters, the first one specifies the spring stiffness, and the second one defines the distance between the hinges. The conditions of stability and instability of the symmetric equilibrium are obtained in the upper and lower position of pendulums. The analysis of asymmetric equilibrium solutions and stability conditions is carried out for long pendulums. Comparison with the sympathetic pendulums model proposed by Sommerfeld indicates that asymmetric solutions exist only for the modified model.
Keywords: pendulum, equilibrium, stability.
@article{ND_2015_11_4_a5,
     author = {M. A. Guzev and A. A. Dmitriev},
     title = {A modified model of coupled pendulums},
     journal = {Russian journal of nonlinear dynamics},
     pages = {709--720},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_4_a5/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - A. A. Dmitriev
TI  - A modified model of coupled pendulums
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 709
EP  - 720
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_4_a5/
LA  - ru
ID  - ND_2015_11_4_a5
ER  - 
%0 Journal Article
%A M. A. Guzev
%A A. A. Dmitriev
%T A modified model of coupled pendulums
%J Russian journal of nonlinear dynamics
%D 2015
%P 709-720
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_4_a5/
%G ru
%F ND_2015_11_4_a5
M. A. Guzev; A. A. Dmitriev. A modified model of coupled pendulums. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 709-720. http://geodesic.mathdoc.fr/item/ND_2015_11_4_a5/

[1] Zommerfeld A., Mekhanika, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001, 368 pp.

[2] Denisova N. V., Kozlov V. V., “O khaotizatsii kolebanii svyazannykh mayatnikov”, Dokl. RAN, 367:2 (1999), 191–193 | MR | Zbl

[3] Huynh H. N., Chew L. Y., “Two-coupled pendulum system: Bifurcation, chaos and the potential landscape approach”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20:8 (2010), 2427–2442 | DOI | MR | Zbl

[4] Markeev A. P., “O dvizhenii svyazannykh mayatnikov”, Nelineinaya dinamika, 9:1 (2013), 27–38 | MR

[5] Torre C. G., Linear chain of coupled oscillators, Foundations of wave phenomena: Book 19, , 2014 http://digitalcommons.usu.edu/foundation_wave/1

[6] Ramachandran P., Krishna S. G., Ram Y. M., “Instability of a constrained pendulum system”, Amer. J. Phys., 79:4 (2011), 395–400 | DOI | MR