Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_4_a5, author = {M. A. Guzev and A. A. Dmitriev}, title = {A modified model of coupled pendulums}, journal = {Russian journal of nonlinear dynamics}, pages = {709--720}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_4_a5/} }
M. A. Guzev; A. A. Dmitriev. A modified model of coupled pendulums. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 709-720. http://geodesic.mathdoc.fr/item/ND_2015_11_4_a5/
[1] Zommerfeld A., Mekhanika, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001, 368 pp.
[2] Denisova N. V., Kozlov V. V., “O khaotizatsii kolebanii svyazannykh mayatnikov”, Dokl. RAN, 367:2 (1999), 191–193 | MR | Zbl
[3] Huynh H. N., Chew L. Y., “Two-coupled pendulum system: Bifurcation, chaos and the potential landscape approach”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20:8 (2010), 2427–2442 | DOI | MR | Zbl
[4] Markeev A. P., “O dvizhenii svyazannykh mayatnikov”, Nelineinaya dinamika, 9:1 (2013), 27–38 | MR
[5] Torre C. G., Linear chain of coupled oscillators, Foundations of wave phenomena: Book 19, , 2014 http://digitalcommons.usu.edu/foundation_wave/1
[6] Ramachandran P., Krishna S. G., Ram Y. M., “Instability of a constrained pendulum system”, Amer. J. Phys., 79:4 (2011), 395–400 | DOI | MR