The control of the motion through an ideal fluid of a rigid body by means of two moving masses
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 633-645.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of motion of a rigid body in an ideal fluid with two material points moving along circular trajectories. The controllability of this system on the zero level set of first integrals is shown. Elementary “gaits” are presented which allow the realization of the body’s motion from one point to another. The existence of obstacles to a controlled motion of the body along an arbitrary trajectory is pointed out.
Keywords: ideal fluid, Kirchhoff equations, controllability of gaits.
@article{ND_2015_11_4_a0,
     author = {A. A. Kilin and E. V. Vetchanin},
     title = {The control of the motion through an ideal fluid of a rigid body by means of two moving masses},
     journal = {Russian journal of nonlinear dynamics},
     pages = {633--645},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_4_a0/}
}
TY  - JOUR
AU  - A. A. Kilin
AU  - E. V. Vetchanin
TI  - The control of the motion through an ideal fluid of a rigid body by means of two moving masses
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 633
EP  - 645
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_4_a0/
LA  - ru
ID  - ND_2015_11_4_a0
ER  - 
%0 Journal Article
%A A. A. Kilin
%A E. V. Vetchanin
%T The control of the motion through an ideal fluid of a rigid body by means of two moving masses
%J Russian journal of nonlinear dynamics
%D 2015
%P 633-645
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_4_a0/
%G ru
%F ND_2015_11_4_a0
A. A. Kilin; E. V. Vetchanin. The control of the motion through an ideal fluid of a rigid body by means of two moving masses. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 633-645. http://geodesic.mathdoc.fr/item/ND_2015_11_4_a0/

[1] Borisov A. V., Jalnine A. Yu., Kuznetsov S. P., Sataev I. R., Sedova J. V., “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532 | DOI | MR | Zbl

[2] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin’s sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI | MR | Zbl

[3] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control the Chaplygin ball using rotors: 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI | MR | Zbl

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl

[5] Borisov A. V., Mamaev I. S., “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118, 7 pp. | DOI | MR | Zbl

[6] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Dynamic interaction of point vortices and a two-dimensional cylinder”, J. Math. Phys., 48:6 (2007), 065403, 9 pp. | DOI | MR | Zbl

[7] Childress S., Spagnolie S. E., Tokieda T., “A bug on a raft: Recoil locomotion in a viscous fluid”, J. Fluid Mech., 669 (2011), 527–556 | DOI | MR | Zbl

[8] Cochran J., Kanso E., Kelly S. D., Xiong H., Krstic M., “Source seeking for two nonholonomic models of fish locomotion”, IEEE Trans. on Robotics, 25:5 (2009), 1166–1176 | DOI

[9] Kazakov A. O., “Strange attractors and mixed dynamics in the unbalanced rubber ball on a plane problem”, Regul. Chaotic Dyn., 18:5 (2013), 508–520 | DOI | MR | Zbl

[10] Marsden J. E., Ostrowski J., “Symmetries in motion: Geometric foundations of motion control”, Nonlinear Sci. Today, 1996, 21 pp. | MR

[11] Murray R. M., Burdick J. W., Kelly S. D., Radford J., “Trajectory generation for mechanical systems with application to robotic locomotion”, Robotics: The algorithmic perspective (Houston, Tex., 1998), A. K. Peters, Natick, Mass., 1998, 81–90 | MR | Zbl

[12] Ramodanov S. M., Tenenev V. A., Treschev D. V., “Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid”, Regul. Chaotic Dyn., 17:6 (2012), 547–558 | DOI | MR | Zbl

[13] Vetchanin E. V., Mamaev I. S., Tenenev V. A., “The self-propulsion of a body with moving internal masses in a viscous fluid”, Regul. Chaotic Dyn., 18:1–2 (2013), 100–117 | DOI | MR | Zbl

[14] Borisov A. V., Kilin A. A., Mamaev I. S., “Novye effekty v dinamike keltskikh kamnei”, Dokl. RAN, 408:2 (2006), 192–195 | MR | Zbl

[15] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 173:4 (2003), 407–418 | DOI

[16] Ivanova T. B., Pivovarova E. N., “Dinamika i upravlenie sfericheskim robotom s osesimmetrichnym mayatnikovym privodom”, Nelineinaya dinamika, 9:3 (2013), 507–520

[17] Kozlov V. V., Onischenko D. A., “O dvizhenii v idealnoi zhidkosti tela, soderzhaschego vnutri sebya podvizhnuyu sosredotochennuyu massu”, PMM, 67:4 (2003), 620–633 | MR | Zbl

[18] Kozlov V. V., Ramodanov S. M., “O dvizhenii izmenyaemogo tela v idealnoi zhidkosti”, PMM, 65:4 (2001), 592–601 | MR | Zbl

[19] Lamb G., Gidrodinamika, OGIZ, Moskva – Leningrad, 1947, 929 pp.

[20] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uch. zap. Mosk. ped. in-ta im. Libknekhta. Ser. fiz.-mat. nauk, 3:2 (1938), 83–94