Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_3_a6, author = {V. V. Kozlov}, title = {The dynamics of systems with servoconstraints. {II}}, journal = {Russian journal of nonlinear dynamics}, pages = {579--611}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_3_a6/} }
V. V. Kozlov. The dynamics of systems with servoconstraints. II. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 579-611. http://geodesic.mathdoc.fr/item/ND_2015_11_3_a6/
[1] Kozlov V. V., “Printsipy dinamiki i servosvyazi”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1989, no. 5, 59–66 | MR | Zbl
[2] Kozlov V. V., “The dynamics of systems with servoconstaints: I”, Regul. Chaotic Dyn., 20:3 (2015), 205–224 | DOI | MR | Zbl
[3] Kozlov V. V., “Dinamika sistem s neintegriruemymi svyazyami: I”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 3, 92–100 ; “Динамика систем с неинтегрируемыми связями: II”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1982, No 4, 70–76 ; “Динамика систем с неинтегрируемыми связями: III”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1983, No 3; “Динамика систем с неинтегрируемыми связями: IV. Интегральные принципы”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1987, No 5, 76–83 ; “Динамика систем с неинтегрируемыми связями: V. Принцип освобождаемости и условие идеальности связей”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1988, No 6 | Zbl | Zbl | Zbl
[4] Li Sh.-M., Berakdar J., “On the validity of the vakonomic model and the Chetaev model for constraint dynamical systems”, Rep. Math. Phys., 60:1 (2007), 107–116 | DOI | MR | Zbl
[5] Béghin M. H., Étude théorique des compas gyrostatiques Anschütz et Sperry, Impr. nationale, Paris, 1921, 132 pp.
[6] Appel P., Traité de Mécanique rationnelle, v. 2, Dynamique des systèmes. Mécanique analytique, 6th ed., Gauthier-Villars, Paris, 1953, 584 pp.
[7] Arnol'd V. I., Kozlov V. V., Neĭshtadt A. I., Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, 518 pp. | MR | Zbl
[8] Kozlov V. V., “Realizatsiya neintegriruemykh svyazei v klassicheskoi mekhanike”, Dokl. AN SSSR, 272:3 (1983), 550–554 | MR | Zbl
[9] Kozlov V. V., “K voprosu o realizatsii svyazei v dinamike”, PMM, 56:4 (1992), 692–698 | MR | Zbl
[10] Volterra V., “Sopra una classe di equazioni dinamiche”, Atti della R. Accad. Sci. di Torino, 33 (1898), 471–475
[11] Poincaré H., “Sur une forme nouvelle des équations de la Mécanique”, C. R. Acad. Sci., 132 (1901), 369–371 | Zbl
[12] Kozlov V. V., Obschaya teoriya vikhrei, 2-e izd., ispr. i dopoln., Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2013, 324 pp.
[13] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2003, 296 pp. | MR
[14] Kozlov V. V., “O suschestvovanii integralnogo invarianta gladkikh dinamicheskikh sistem”, PMM, 51:4 (1987), 538–545 | MR | Zbl
[15] Volterra V., “Sur la théorie des variations des latitudes”, Acta Math., 22 (1899), 201–357 | DOI | MR
[16] Valle-Pussen Sh. -Zh., Kurs analiza beskonechno malykh, V 2-kh tt., v. 2, Gostekhizdat, Moskva, 1933, 469 pp.
[17] Nambu Y., “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7:8 (1973), 2405–2412 | DOI | MR | Zbl
[18] Proc. Steklov Inst. Math., 256 (2007), 188–205 | DOI | MR | Zbl
[19] Yoshida H., “Necessary condition for the existence of algebraic first integrals: 1. Kowalevski's exponents”, Celestial Mech., 31:4 (1983), 363–379 | DOI | MR | Zbl
[20] Kozlov V. V., “Tenzornye invarianty kvaziodnorodnykh sistem differentsialnykh uravnenii i asimptoticheskii metod Kovalevskoi – Lyapunova”, Matem. zametki, 51:2 (1992), 46–52 | Zbl
[21] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. 1, Gauthier-Villars, Paris, 1914, 618 pp.
[22] Kozlov V. V., “Remarks on integrable systems”, Regul. Chaotic Dyn., 19:2 (2014), 145–161 | DOI | MR | Zbl
[23] Jacobi C. G. J., “Sur la rotation d'un corps”, Gesammelte Werke, v. 2, Raimer, Berlin, 1882, 289–352
[24] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, 2-e izd., NITs «Regulyarnaya i khaoticheskaya dinamika», Moskva – Izhevsk, 2000, 248 pp. | MR
[25] Naimark M. A., Lineinye predstavleniya gruppy Lorentsa, Nauka, Moskva, 1958, 376 pp. | MR
[26] Kozlov V. V., “Ob invariantnykh merakh uravnenii Eilera – Puankare na algebrakh Li”, Funkts. analiz i ego pril., 22:1 (1988), 69–70 | MR
[27] Kozlov V. V., Yaroschuk V. A., “Ob invariantnykh merakh uravnenii Eilera – Puankare na unimodulyarnykh gruppakh”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1993, no. 2, 91–95
[28] Veselov A. P., Veselova L. E., “Potoki na gruppakh Li s negolonomnoi svyazyu i integriruemye gamiltonovy sistemy”, Funkts. analiz i ego pril., 20:4 (1986), 65–66 | MR | Zbl
[29] Lyapunov A. M., “O postoyannykh vintovykh dvizheniyakh tverdogo tela v zhidkosti”, Soobscheniya Kharkovskogo matem. ob-va. Ser. 2, 1:1–2 (1888), 7–60
[30] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2005, 576 pp. | MR
[31] Zenkov D. V., Kozlov V. V., “Geometricheskoe predstavlenie Puanso v dinamike mnogomernogo tverdogo tela”, Tr. sem. po vektorn. i tenzorn. analizu, 23, 1988, 202–204 | MR | Zbl
[32] Fedorov Yu. N., Kozlov V. V., “Various aspects of $n$-dimensional rigid body dynamics”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, ed. V. V. Kozlov, AMS, Providence, R.I., 1995, 141–171 | MR
[33] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy 7, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 16, eds. V. I. Arnold, S. P. Novikov, VINITI, Moskva, 1987, 5–85 | MR
[34] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, AMS, Providence, R.I., 2002, 259 pp. | MR | Zbl
[35] Lewis A. D., Murray R. M., “Variational principles for constrained systems: Theory and experiment”, Internat. J. Non-Linear Mech., 30:6 (1995), 793–815 | DOI | MR | Zbl
[36] Favretti M., “Equivalence of dynamics for nonholonomic systems with transverse constraints”, J. Dynam. Differential Equations, 10:4 (1998), 511–536 | DOI | MR | Zbl
[37] Cardin F., Favretti M., “On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints”, J. Geom. Phys., 18:4 (1996), 295–325 | DOI | MR | Zbl
[38] de León M., Marrero J. C., Martin de Diego D., “Vakonomic mechanics versus non-holonomic mechanics: A unified geometrical approach”, J. Geom. Phys., 35:2–3 (2000), 126–144 | MR | Zbl
[39] Zampieri G., “Nonholonomic versus vakonomic dynamics”, J. Differential Equations, 163:2 (2000), 335–347 | DOI | MR | Zbl
[40] Fernandez O. E., Bloch A. M., “Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data”, J. Phys. A, 41:34 (2008), 344005, 20 pp. | DOI | MR | Zbl
[41] Deryabin M. V., Kozlov V. V., “Ob effekte «vynyrivaniya» tyazhelogo tverdogo tela v zhidkosti”, Izv. RAN. Mekhanika tverdogo tela, 2002, no. 1, 68–74 | MR
[42] Antunes A. C. B., Sigaud C., de Moraes P. C. G., “Controlling nonholonomic Chaplygin systems”, Braz. J. Phys., 40:2 (2010), 131–140 | DOI | MR
[43] Bolotin S. V., “The problem of optimal control of a Chaplygin ball by internal rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570 | DOI | MR | Zbl
[44] Llibre J., Ramírez R., Sadovskaia N., “A new approach to the vakonomic mechanics”, Nonlinear Dynam., 78:3 (2014), 2219–2247 | DOI | MR | Zbl
[45] Gledzer E. B., Dolzhanskii F. V., Obukhov A. M., Sistemy gidrodinamicheskogo tipa i ikh primenenie, Nauka, Moskva, 1981, 368 pp. | MR
[46] Borisov A. V., Mamaev I. S., Tsyganov A. V., “Negolonomnaya dinamika i puassonova geometriya”, UMN, 69:3 (2014), 87–144 | DOI | MR | Zbl
[47] Borisov A. V., Kilin A. A., Mamaev I. S., “Dynamics and control of an omniwheel vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172 | DOI | MR | Zbl
[48] Patera J., Sharp R. T., Winternitz P., “Invariants of real low dimension Lie algebras”, J. Math. Phys., 17:6 (1976), 986–994 | DOI | MR | Zbl
[49] Cariñena J. F., Ibort A., Marmo G., Perelomov A., “On the geometry of Lie algebras and Poisson tensors”, J. Phys. A, 27:22 (1994), 7425–7449 | DOI | MR | Zbl
[50] Hamel G., “Das Hamiltonsche Prinzip bei nichtholonomen Systemen”, Math. Ann., 111:1 (1935), 94–97 | DOI | MR
[51] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI | MR | Zbl
[52] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin’s sphere using rotors: 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI | MR | Zbl
[53] Svinin M., Morinaga A., Yamamoto M., “On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors”, Regul. Chaotic Dyn., 18:1–2 (2013), 126–143 | DOI | MR | Zbl
[54] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 28:7 (2015), 2307–2318 | DOI | MR | Zbl
[55] Borisov A. V., Mamaev I. S., “Topological analysis of an integrable system related to the rolling of a ball on a sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371 | DOI | MR | Zbl
[56] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl
[57] Bizyaev I. A., Borisov A. V., Mamaev I. S., “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl
[58] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | DOI | MR | Zbl
[59] Marle C. M., “Kinematic and geometric constraints, servomechanisms and control of mechanical systems”, Rend. Sem. Mat. Univ. Politec. Torino, 54:4 (1996), 353–364 | MR | Zbl