Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_3_a2, author = {Ya. I. Boev and G. I. Strelkova and V. S. Anishchenko}, title = {Estimating dimensions of chaotic attractors using {Poincar\'e} recurrences}, journal = {Russian journal of nonlinear dynamics}, pages = {475--485}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_3_a2/} }
TY - JOUR AU - Ya. I. Boev AU - G. I. Strelkova AU - V. S. Anishchenko TI - Estimating dimensions of chaotic attractors using Poincaré recurrences JO - Russian journal of nonlinear dynamics PY - 2015 SP - 475 EP - 485 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2015_11_3_a2/ LA - ru ID - ND_2015_11_3_a2 ER -
%0 Journal Article %A Ya. I. Boev %A G. I. Strelkova %A V. S. Anishchenko %T Estimating dimensions of chaotic attractors using Poincaré recurrences %J Russian journal of nonlinear dynamics %D 2015 %P 475-485 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2015_11_3_a2/ %G ru %F ND_2015_11_3_a2
Ya. I. Boev; G. I. Strelkova; V. S. Anishchenko. Estimating dimensions of chaotic attractors using Poincaré recurrences. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 475-485. http://geodesic.mathdoc.fr/item/ND_2015_11_3_a2/
[1] Poincaré H., “Sur le probléme des trois corps et les équations de la dynamique”, Acta Math., 13 (1890), 1–270 | DOI
[2] Chetaev N. G., “Sur la stabilité à la Poisson”, C. R. Acad. Sci. Paris, 187 (1928), 637–638
[3] Chetaev N. G., “Ob ustoichivosti v smysle Puassona”, Uchen. zap. Kazan. gos. un-ta, 89:2 (1929), 199–201 | Zbl
[4] Hirata M., Saussol B., Vaienti S., “Statistics of return times: A general framework and new applications”, Comm. Math. Phys., 206:1 (1999), 33–55 | DOI | MR | Zbl
[5] Barreira L., Dimension and recurrence in hyperbolic dynamics, Progr. Math., 272, Birkhäuser, Basel, 2008, 300 pp. | MR | Zbl
[6] Afraimovich V. S., “Pesin's dimension for Poincaré recurrences”, Chaos, 7:1 (1997), 12–20 | DOI | MR | Zbl
[7] Eckmann J.-P., Oliffson Kamphorst S., Ruelle D., “Recurrence plots of dynamical systems”, Europhys. Lett., 4:9 (1987), 973–978 | DOI
[8] Marwan N., Romano M. C., Thiel M., Kurths J., “Recurrence plots for the analysis of complex systems”, Phys. Rep., 438:5–6 (2007), 237–329 | DOI | MR
[9] Baptista M. S., Caldas I. L., “Stock market dynamics”, Phys. A, 312:3–4 (2002), 539–564 | DOI | MR | Zbl
[10] Baptista M. S., Caldas I. L., Heller M. V. A. P., Ferreira A. A., Bengtson R. D., Stöckel J., “Recurrence in plasma edge turbulence”, Phys. Plasmas, 8:10 (2001), 4455–4462 | DOI
[11] Frahm K. M., Shepelyansky D. L., “Poincaré recurrences of DNA sequences”, Phys. Rev. E, 85:1 (2012), 016214, 5 pp. | DOI | MR
[12] González H., Infante O., Pérez-Grovas H., Jose M. V., Lerma C., “Nonlinear dynamics of heart rate variability in response to orthostatism and hemodialysis in chronic renal failure patients: Recurrence analysis approach”, Med. Eng. Phys., 35:2 (2013), 178–187 | DOI
[13] Acharya U. R., Sree S. V., Chattopadhyay S., Yu W., Ang P. Ch. A., “Application of recurrence quantification analysis for the automated identification of epileptic EEG signals”, Int. J. Neural Syst., 21:3 (2011), 199–211 | DOI
[14] Siopsis G., “Poincaré recurrences of Schwarzschild black holes”, Classical Quantum Gravity, 24:16 (2007), 4133–4145 | DOI | MR | Zbl
[15] Barbón J. L. F., Rabinovici E., “Very long time scales and black hole thermal equilibrium”, J. High Energy Phys., 2003, no. 11, 047, 27 pp. | DOI | MR
[16] Afraimovich V. S., Lin W.-W., Rulkov N. F., “Fractal dimension for Poincaré recurrences as an indicator of synchronized chaotic regimes”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:10 (2000), 2323–2337 | DOI | MR | Zbl
[17] Anishchenko V. S., Boev Ya. I., “Diagnostics of stochastic resonance using Poincaré recurrence time distribution”, Commun. Nonlinear Sci. Numer. Simul., 18:4 (2013), 953–958 | DOI | MR | Zbl
[18] Boev Ya. I., Vadivasova T. E., Anishchenko V. S., “Poincaré recurrence statistics as an indicator of chaos synchronization”, Chaos, 24:2 (2014), 023110, 7 pp. | DOI | MR
[19] Gao J. B., “Recurrence time statistics for chaotic systems and their applications”, Phys. Rev. Lett., 83:16 (1999), 3178–3181 | DOI
[20] Carletti T., Galatolo S., “Numerical estimates of local dimension by waiting time and quantitative recurrence”, Phys. A, 364 (2006), 120–128 | DOI | MR
[21] Anischenko V. S., Biryukova N. I., Astakhov S. V., Boev Ya. I., “Vremya vozvrata Puankare i lokalnaya razmernost khaoticheskikh attraktorov”, Nelineinaya dinamika, 8:3 (2012), 449–460
[22] Anischenko V. S., Astakhov S. V., “Teoriya vozvratov Puankare i ee prilozhenie k zadacham nelineinoi fiziki”, UFN, 183:10 (2013), 1009–1028 | DOI
[23] Anishchenko V. S., Khairulin M., Strelkova G., Kurths J., “Statistical characteristics of the Poincaré return times for a one-dimensional nonhyperbolic map”, Eur. Phys. J. B, 82:3–4 (2011), 219–225 | DOI | MR
[24] Altmann E. G., da Silva E. C., Caldas I. L., “Recurrence time statistics for finite size intervals”, Chaos, 14:4 (2004), 975–981 | DOI | MR | Zbl
[25] Theiler J., “Estimating fractal dimension”, J. Opt. Soc. Amer. A, 7:6 (1990), 1055–1073 | DOI | MR
[26] Lozi R., “Un attracteur étrange (?) du type attracteur de Hénon”, J. Phys. Colloques, 39:C5 (1978), C5-9–C5-10