Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_3_a0, author = {A. D. Morozov and K. E. Morozov}, title = {Transitory shift in the flutter problem}, journal = {Russian journal of nonlinear dynamics}, pages = {447--457}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_3_a0/} }
A. D. Morozov; K. E. Morozov. Transitory shift in the flutter problem. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 447-457. http://geodesic.mathdoc.fr/item/ND_2015_11_3_a0/
[1] Mosovsky B. A., Meiss J. D., “Transport in Transitory Dynamical Systems”, SIAM J. Applied Dyanamical Systems, 10:1 (2011), 35–65 | DOI | MR | Zbl
[2] Mosovsky B. A., Meiss J. D., “Transport in Transitory Three-Dimensional Liouville Flows”, SIAM J. Appl. Dyn. Sys., 11:4 (2012), 1785–1816 | DOI | MR | Zbl
[3] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2002, 560 pp.
[4] Holmes Ph. J., “Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis”, Journal of Sound and Vibration, 53:4 (1977), 471–503 | DOI | MR | Zbl
[5] Tam J. I., Holmes Ph. J., “Revisiting a magneto-elastic strange attractor”, Journal of Sound and Vibration, 333:6 (2014), 1767–1780 | DOI
[6] Markus L., “Asymptotically autonomous differential systes”, Contributions to the Theory of Nonlinear Oscillations, Ann of Math Stud., 3, ed. S. Lefschetz, Princeton University Press, Princeton, N.J., 1956, 17–29 | MR
[7] Lerman L. M., Shilnikov L. P., “O klassifikatsii grubykh neavtonomnykh dinamicheskikh sistem 2-go poryadka s konechnym chislom yacheek”, DAN CCCR, 209:3 (1973), 544–547 | MR | Zbl
[8] Zaslavskii G. M., Fizika khaosa v gamiltonovykh sistemakh, RKhD, Moskva – Izhevsk, 2004, 286 pp.
[9] Kostromina O. S., Morozov A. D., “O predelnykh tsiklakh v asimmetrichnom uravnenii Dyuffinga – Van-der-Polya”, Vestnik NNGU ser. Matematika, 2012, no. 1, 115–121
[10] Morozov A. D., Kostromina O. S., “On Periodic Perturbations of Asymmetric Duffing – Van-der-Pol Equation”, International Journal of Bifurcation and Chaos, 24:5 (2014), 1450061, 16 pp. | DOI | MR | Zbl