Transitory shift in the flutter problem
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 447-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the two-dimensional system, which occurs in the flutter problem. We assume that this system is transitory (one whose time-dependence is confined to a compact interval). In the conservative case of this problem, we identified measure of transport between the cells filled with closed trajectories. In the nonconservative case, we consider the impact of transitory shift to setting of one or another attractor. We give probabilities of changing a mode (stationary to auto-oscillation).
Keywords: transitory system, separatrix, attractors, flutter.
Mots-clés : limit cycles
@article{ND_2015_11_3_a0,
     author = {A. D. Morozov and K. E. Morozov},
     title = {Transitory shift in the flutter problem},
     journal = {Russian journal of nonlinear dynamics},
     pages = {447--457},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_3_a0/}
}
TY  - JOUR
AU  - A. D. Morozov
AU  - K. E. Morozov
TI  - Transitory shift in the flutter problem
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 447
EP  - 457
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_3_a0/
LA  - ru
ID  - ND_2015_11_3_a0
ER  - 
%0 Journal Article
%A A. D. Morozov
%A K. E. Morozov
%T Transitory shift in the flutter problem
%J Russian journal of nonlinear dynamics
%D 2015
%P 447-457
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_3_a0/
%G ru
%F ND_2015_11_3_a0
A. D. Morozov; K. E. Morozov. Transitory shift in the flutter problem. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 447-457. http://geodesic.mathdoc.fr/item/ND_2015_11_3_a0/

[1] Mosovsky B. A., Meiss J. D., “Transport in Transitory Dynamical Systems”, SIAM J. Applied Dyanamical Systems, 10:1 (2011), 35–65 | DOI | MR | Zbl

[2] Mosovsky B. A., Meiss J. D., “Transport in Transitory Three-Dimensional Liouville Flows”, SIAM J. Appl. Dyn. Sys., 11:4 (2012), 1785–1816 | DOI | MR | Zbl

[3] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2002, 560 pp.

[4] Holmes Ph. J., “Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis”, Journal of Sound and Vibration, 53:4 (1977), 471–503 | DOI | MR | Zbl

[5] Tam J. I., Holmes Ph. J., “Revisiting a magneto-elastic strange attractor”, Journal of Sound and Vibration, 333:6 (2014), 1767–1780 | DOI

[6] Markus L., “Asymptotically autonomous differential systes”, Contributions to the Theory of Nonlinear Oscillations, Ann of Math Stud., 3, ed. S. Lefschetz, Princeton University Press, Princeton, N.J., 1956, 17–29 | MR

[7] Lerman L. M., Shilnikov L. P., “O klassifikatsii grubykh neavtonomnykh dinamicheskikh sistem 2-go poryadka s konechnym chislom yacheek”, DAN CCCR, 209:3 (1973), 544–547 | MR | Zbl

[8] Zaslavskii G. M., Fizika khaosa v gamiltonovykh sistemakh, RKhD, Moskva – Izhevsk, 2004, 286 pp.

[9] Kostromina O. S., Morozov A. D., “O predelnykh tsiklakh v asimmetrichnom uravnenii Dyuffinga – Van-der-Polya”, Vestnik NNGU ser. Matematika, 2012, no. 1, 115–121

[10] Morozov A. D., Kostromina O. S., “On Periodic Perturbations of Asymmetric Duffing – Van-der-Pol Equation”, International Journal of Bifurcation and Chaos, 24:5 (2014), 1450061, 16 pp. | DOI | MR | Zbl