On the Mars rotation under the action of gravity torque from the Sun, Jupiter and Earth
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 329-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Mars rotation under the action of gravity torque from the Sun, Jupiter, Earth is considered. It is assumed that Mars is the axially symmetric rigid body ($A=B$), the orbits of Mars, Earth and Jupiter are Kepler ellipses. Elliptical mean motions of Earth and Jupiter are the independent small parameters. The averaged Hamiltonian of problem and integrals of evolution equations are obtained. By assumption that the equatorial plane of unit sphere parallel to the plane of Jupiter orbit, the set of trajectories for angular momentum vector of Mars $\mathbf{I}_2$ is drawn. It is well known that «classic» equilibriums of vector $\mathbf{I}_2$ belong to the normal to the Mars orbit plane. It is shown that they are saved by the action of gravitational torque of Jupiter and Earth. Besides that there are two new stationary points of $\mathbf{I}_2$ on the normal to the Jupiter orbit plane. These equilibriums are unstable, homoclinic trajectories pass through them. In addition, there are a pair of unstable equilibriums on the great circle that is parallel to the Mars orbit plane. Four heteroclinic curves pass through these equilibriums. There are two stable equilibriums of $\mathbf{I}_2$ between pairs of these curves.
Keywords: four body restricted problem, the track of the angular momentum vector, method of averaging.
Mots-clés : Deprit – Andoyer variables
@article{ND_2015_11_2_a8,
     author = {P. S. Krasil'nikov and R. N. Amelin},
     title = {On the {Mars} rotation under the action of gravity torque from the {Sun,} {Jupiter} and {Earth}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {329--342},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a8/}
}
TY  - JOUR
AU  - P. S. Krasil'nikov
AU  - R. N. Amelin
TI  - On the Mars rotation under the action of gravity torque from the Sun, Jupiter and Earth
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 329
EP  - 342
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_2_a8/
LA  - ru
ID  - ND_2015_11_2_a8
ER  - 
%0 Journal Article
%A P. S. Krasil'nikov
%A R. N. Amelin
%T On the Mars rotation under the action of gravity torque from the Sun, Jupiter and Earth
%J Russian journal of nonlinear dynamics
%D 2015
%P 329-342
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_2_a8/
%G ru
%F ND_2015_11_2_a8
P. S. Krasil'nikov; R. N. Amelin. On the Mars rotation under the action of gravity torque from the Sun, Jupiter and Earth. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 329-342. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a8/

[1] Andoyer M. H., Cours de Mécaniquee Céleste, Vol. 1, Gauthier-Villars, Paris, 1923, 440 pp.

[2] Deprit A., “Free rotation of a rigid body studied in the phase plane”, Amer. J. Phys., 35:5 (1967), 424–428

[3] Serret J. A., “Mémoire sur l'emploi de la méthode de la variation des arbitraires dans la théorie des mouvements de rotation”, Mémoires de l'Académie des Sciences de Paris, 35 (1866), 585–616

[4] Arkhangelskii Yu. A., Analiticheskaya dinamika tverdogo tela, Nauka, Moskva, 1977, 328 pp.

[5] Beletskii V. V., Dvizhenie sputnika otnositelno tsentra mass v gravitatsionnom pole, MGU, Moskva, 1975, 308 pp.

[6] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2005, 576 pp.

[7] Abalakin V. K., Aksenov E. P., Grebenikov E. A., Ryabov Yu. A., Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike, Nauka, Moskva, 1971, 584 pp.

[8] Krasilnikov P. S., “O nelineinykh kolebaniyakh mayatnika peremennoi dliny na vibriruyuschem osnovanii”, PMM, 76:1 (2012), 36–51

[9] Markeev A. P., Krasilnikov P. S., “O dvizhenii sputnika otnositelno tsentra mass v ellipticheskoi ogranichennoi zadache trekh tel”, Kosmicheskie issledovaniya, 19:2 (1981), 178–190

[10] Krasilnikov P. S., Zakharova E. E., “Nerezonansnye vrascheniya sputnika otnositelno tsentra mass na uslovno-periodicheskoi orbite v ogranichennoi zadache $N$ tel”, Kosmicheskie issledovaniya, 31:6 (1993), 11–21

[11] Bouquillon S., Souchay J., “Pricise modelling of the precession-nutation of Mars”, Astron. Astrophys., 345 (1999), 282–297

[12] Petrov K. G., Tikhonov A. A., “Uravneniya rotatsionnogo dvizheniya tverdogo tela, osnovannye na ispolzovanii kvaternionnykh parametrov”, MTT, 2002, no. 3, 3–16

[13] Zlenko A. A., “Dvizhenie dvukh vyazkouprugikh sharov v pole prityagivayuschego tsentra”, Kosmicheskie issledovaniya, 49:6 (2011), 569–572

[14] Zlenko A. A., “Statsionarnye resheniya i issledovanie ikh ustoichivosti v zadache ob evolyutsii dvizheniya dvukh vyazkouprugikh sharov v pole prityagivayuschego tsentra”, Kosmicheskie issledovaniya, 50:6 (2012), 490–492