Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_2_a6, author = {P. E. Ryabov and A. Yu. Savushkin}, title = {Phase topology of the {Kowalevski\,--\,Sokolov} top}, journal = {Russian journal of nonlinear dynamics}, pages = {287--317}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a6/} }
P. E. Ryabov; A. Yu. Savushkin. Phase topology of the Kowalevski\,--\,Sokolov top. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 287-317. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a6/
[1] Appelrot G. G., “Ne vpolne simmetrichnye tyazhelye giroskopy”, Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki, AN SSSR, Moskva – Leningrad, 1940, 61–156
[2] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. Matem., 48:5 (1984), 883–938
[3] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, V 2-kh tt., UdGU, Izhevsk, 1999, 444 s.; 448 pp.
[4] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2 (2010), 71–132
[5] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2005, 576 pp.
[6] Borisov A. V., Mamaev I. S., Sokolov V. V., “Novyi integriruemyi sluchai na $so(4)$”, Dokl. RAN, 381:5 (2001), 614–615
[7] Vershilov A. V., Grigorev Yu. A., Tsyganov A. V., “Ob odnoi integriruemoi deformatsii volchka Kovalevskoi”, Nelineinaya dinamika, 10:2 (2014), 223–236
[8] Gashenenko I. N., “Integralnye mnogoobraziya v zadache o dvizhenii tyazhelogo tverdogo tela”, MTT, 2003, no. 33, 20–32
[9] Ipatov A. F., “Dvizhenie giroskopa S. V. Kovalevskoi na granitse oblasti ultraelliptichnosti”, Uchen. zap. Petrozavodsk. un-ta, 18:2 (1970), 6–93
[10] Kozlov I. K., “Topologiya sloeniya Liuvillya dlya integriruemogo sluchaya Kovalevskoi na algebre Li $so(4)$”, Matem. sb., 205:4 (2014), 79–120
[11] Komarov I. V., “Bazis Kovalevskoi dlya atoma vodoroda”, TMF, 47:1 (1981), 67–72
[12] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, Moskva, 1966, 531 pp.
[13] Ryabov P. E., “Fazovaya topologiya odnoi neprivodimoi integriruemoi zadachi dinamiki tverdogo tela”, TMF, 176:2 (2013), 205–221
[14] Smale S., “Topology and mechanics: 1”, Invent. Math., 10:4 (1970), 305–331
[15] Sokolov V. V., “Novyi integriruemyi sluchai dlya uravnenii Kirkhgofa”, TMF, 129:1 (2001), 31–37
[16] Sokolov V. V., Tsyganov A. V., “Pary Laksa dlya deformirovannykh volchkov Kovalevskoi i Goryacheva – Chaplygina”, TMF, 131:1 (2002), 118–125
[17] Fomenko A. T., Simplekticheskaya geometriya: Metody i prilozheniya, MGU, Moskva, 1988, 413 pp.
[18] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. Matem., 54:3 (1990), 546–575
[19] Kharlamov M. P., “Bifurkatsii sovmestnykh urovnei pervykh integralov v sluchae Kovalevskoi”, PMM, 47:6 (1983), 922–930
[20] Kharlamov M. P., “Kriticheskie podsistemy girostata Kovalevskoi v dvukh postoyannykh polyakh”, Nelineinaya dinamika, 3:3 (2007), 331–348
[21] Kharlamov M. P., “Kriticheskoe mnozhestvo i bifurkatsionnaya diagramma zadachi o dvizhenii volchka Kovalevskoi v dvoinom pole”, MTT, 2004, no. 34, 47–58
[22] Kharlamov M. P., “Obobschenie 4-go klassa Appelrota: Oblast suschestvovaniya dvizhenii i razdelenie peremennykh”, Nelineinaya dinamika, 2:4 (2006), 453–472
[23] Kharlamov M. P., “Simmetriya v sistemakh s giroskopicheskimi silami”, MTT, 1983, no. 15, 87–93
[24] Kharlamov M. P., Ryabov P. E., “Diagrammy Smeila – Fomenko i grubye invarianty sluchaya Kovalevskoi – Yakhya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 4, 40–59
[25] Kharlamov M. P., Ryabov P. E., Kharlamova I. I., Savushkin A. Yu., Shvedov E. G., Topologicheskii atlas girostata Kovalevskoi – Yakhya: Analiticheskie rezultaty i topologicheskii analiz, 2014, arXiv: 1411.6248
[26] Kharlamov M. P., Kharlamova I. I., Shvedov E. G., “Bifurkatsionnye diagrammy na izoenergeticheskikh urovnyakh girostata Kovalevskoi – Yakhya”, MTT, 2010, no. 40, 77–90
[27] Kharlamov P. V., Lektsii po dinamike tverdogo tela, NGU, Novosibirsk, 1965, 221 pp.
[28] Kharlamova I. I., Ryabov P. E., “Elektronnyi atlas bifurkatsionnykh diagramm girostata Kovalevskoi – Yakhya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 2, 147–162
[29] Bolsinov A. V., Borisov A. V., Mamaev I. S., “The bifurcation analysis and the Conley index in mechanics”, Regul. Chaotic Dyn., 17:5 (2012), 457–478
[30] Borisov A. V., Mamaev I. S., “Topological analysis of an integrable system related to the rolling of a ball on a sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371
[31] Borisov A. V., Mamaev I. S., Kholmskaya A. G., “Kovalevskaya top and generalizations of integrable systems”, Regul. Chaotic Dyn., 6:1 (2001), 1–16
[32] Clebsch A., “Über die Bewegung eines Körpers in einer Flüssigkeit”, Math. Ann., 3:1 (1870), 238–262
[33] Dragović V., Kukić K., “Systems of Kowalevski type and discriminantly separable polynomials”, Regul. Chaotic Dyn., 19:2 (2014), 162–184
[34] Dragović V., Kukić K., “The Sokolov case, integrable Kirchhoff elasticae, and genus 2 theta functions via discriminantly separable polynomials”, Proc. Steklov Inst. Math., 286:1 (2014), 224–239
[35] Jacob A., “Invariant manifolds in the motion of a rigid body about a fixed point”, Rev. Roumaine Math. Pures Appl., 16:10 (1971), 1497–1521
[36] Jurdjevic V., “Integrable Hamiltonian systems on Lie groups: Kowalewski type”, Ann. of Math. (2), 150:2 (1999), 605–644
[37] Kötter F., “Sur le cas traité par M-me Kowalevski de rotation d'un corps solide pesant autour d'un point fixe”, Acta Math., 17:1 (1893), 209–263
[38] Kharlamov M. P., “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regul. Chaotic Dyn., 10:4 (2005), 381–398
[39] Kharlamov M. P., “Extensions of the Appelrot classes for the generalized gyrostat in a double force field”, Regul. Chaotic Dyn., 19:2 (2014), 226–244
[40] Komarov I. V., Kuznetsov V. B., “Kowalewski's top on the Lie algebras $o(4)$, $e(3)$ and $o(3,1)$”, J. Phys. A, 23:6 (1990), 841–846
[41] Komarov I. V., Sokolov V. V., Tsiganov A. V., “Poisson maps and integrable deformations of the Kowalevski top”, J. Phys. A, 36:29 (2003), 8035–8048
[42] Lerman L. M., Umanskiǐ Ya. L., “Structure of the Poisson action of $\mathbf{R}^2$ on a four-dimensional symplectic manifold: 1”, Selecta Math. Sov., 6:4 (1987), 365–396; Лерман Л. М., Уманский Я. Л., “Структура пуассоновского действия $\mathbf{R}^2$ на четырехмерном симплектическом многообразии”, Деп.в ВИНИТИ 10.07.81, No 3427-81, 1981, ГГУ, Горький, 51 с.
[43] Oshemkov A. A., “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. semin. po vekt. i tenz. analizu, 25 (1993), 23–109
[44] Ryabov P. E., “Bifurkatsii pervykh integralov v sluchae Sokolova”, TMF, 134:2 (2003), 207–226
[45] Sokolov V. V., “A generalized Kowalewski Hamiltonian and new integrable cases on $e(3)$ and $so(4)$”, Kowalevski property, CRM Proc. Lecture Notes, 32, ed. V. B. Kuznetsov, AMS, Providence, R.I., 2002, 304–315
[46] Yehia H. M., “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172
[47] Yehia H. M., “On certain integrable motions of a rigid body acted upon by gravity and magnetic fields”, Internat. J. Non-Linear Mech., 36:7 (2001), 1173–1175