Phase topology of the Kowalevski\,--\,Sokolov top
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 287-317
Voir la notice de l'article provenant de la source Math-Net.Ru
The phase topology of the integrable Hamiltonian system on $e(3)$ found by V. V. Sokolov (2001)
and generalizing the Kowalevski case is investigated. The generalization contains, along with
a homogeneous potential force field, gyroscopic forces depending on the configurational variables.
Relative equilibria are classified, their type is calculated and the character of stability is defined.
The Smale diagrams of the case are found and the classification of iso-energy manifolds of the
reduced systems with two degrees of freedom is given. The set of critical points of the complete
momentum map is represented as a union of critical subsystems; each critical subsystem is a one-
parameter family of almost Hamiltonian systems with one degree of freedom. For all critical points
we explicitly calculate the characteristic values defining their type. We obtain the equations of
the surfaces bearing the bifurcation diagram of the momentum map. We give examples of the
existing iso-energy diagrams with a complete description of the corresponding rough topology
(of the regular Liouville tori and their bifurcations).
Keywords:
integrable Hamiltonian systems, iso-energy surfaces, critical subsystems, bifurcation diagrams, rough topology.
Mots-clés : relative equilibria
Mots-clés : relative equilibria
@article{ND_2015_11_2_a6,
author = {P. E. Ryabov and A. Yu. Savushkin},
title = {Phase topology of the {Kowalevski\,--\,Sokolov} top},
journal = {Russian journal of nonlinear dynamics},
pages = {287--317},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a6/}
}
P. E. Ryabov; A. Yu. Savushkin. Phase topology of the Kowalevski\,--\,Sokolov top. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 287-317. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a6/