Phase topology of the Kowalevski\,--\,Sokolov top
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 287-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

The phase topology of the integrable Hamiltonian system on $e(3)$ found by V. V. Sokolov (2001) and generalizing the Kowalevski case is investigated. The generalization contains, along with a homogeneous potential force field, gyroscopic forces depending on the configurational variables. Relative equilibria are classified, their type is calculated and the character of stability is defined. The Smale diagrams of the case are found and the classification of iso-energy manifolds of the reduced systems with two degrees of freedom is given. The set of critical points of the complete momentum map is represented as a union of critical subsystems; each critical subsystem is a one- parameter family of almost Hamiltonian systems with one degree of freedom. For all critical points we explicitly calculate the characteristic values defining their type. We obtain the equations of the surfaces bearing the bifurcation diagram of the momentum map. We give examples of the existing iso-energy diagrams with a complete description of the corresponding rough topology (of the regular Liouville tori and their bifurcations).
Keywords: integrable Hamiltonian systems, iso-energy surfaces, critical subsystems, bifurcation diagrams, rough topology.
Mots-clés : relative equilibria
@article{ND_2015_11_2_a6,
     author = {P. E. Ryabov and A. Yu. Savushkin},
     title = {Phase topology of the {Kowalevski\,--\,Sokolov} top},
     journal = {Russian journal of nonlinear dynamics},
     pages = {287--317},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a6/}
}
TY  - JOUR
AU  - P. E. Ryabov
AU  - A. Yu. Savushkin
TI  - Phase topology of the Kowalevski\,--\,Sokolov top
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 287
EP  - 317
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_2_a6/
LA  - ru
ID  - ND_2015_11_2_a6
ER  - 
%0 Journal Article
%A P. E. Ryabov
%A A. Yu. Savushkin
%T Phase topology of the Kowalevski\,--\,Sokolov top
%J Russian journal of nonlinear dynamics
%D 2015
%P 287-317
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_2_a6/
%G ru
%F ND_2015_11_2_a6
P. E. Ryabov; A. Yu. Savushkin. Phase topology of the Kowalevski\,--\,Sokolov top. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 287-317. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a6/

[1] Appelrot G. G., “Ne vpolne simmetrichnye tyazhelye giroskopy”, Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki, AN SSSR, Moskva – Leningrad, 1940, 61–156

[2] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. Matem., 48:5 (1984), 883–938

[3] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, V 2-kh tt., UdGU, Izhevsk, 1999, 444 s.; 448 pp.

[4] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2 (2010), 71–132

[5] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2005, 576 pp.

[6] Borisov A. V., Mamaev I. S., Sokolov V. V., “Novyi integriruemyi sluchai na $so(4)$”, Dokl. RAN, 381:5 (2001), 614–615

[7] Vershilov A. V., Grigorev Yu. A., Tsyganov A. V., “Ob odnoi integriruemoi deformatsii volchka Kovalevskoi”, Nelineinaya dinamika, 10:2 (2014), 223–236

[8] Gashenenko I. N., “Integralnye mnogoobraziya v zadache o dvizhenii tyazhelogo tverdogo tela”, MTT, 2003, no. 33, 20–32

[9] Ipatov A. F., “Dvizhenie giroskopa S. V. Kovalevskoi na granitse oblasti ultraelliptichnosti”, Uchen. zap. Petrozavodsk. un-ta, 18:2 (1970), 6–93

[10] Kozlov I. K., “Topologiya sloeniya Liuvillya dlya integriruemogo sluchaya Kovalevskoi na algebre Li $so(4)$”, Matem. sb., 205:4 (2014), 79–120

[11] Komarov I. V., “Bazis Kovalevskoi dlya atoma vodoroda”, TMF, 47:1 (1981), 67–72

[12] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, Moskva, 1966, 531 pp.

[13] Ryabov P. E., “Fazovaya topologiya odnoi neprivodimoi integriruemoi zadachi dinamiki tverdogo tela”, TMF, 176:2 (2013), 205–221

[14] Smale S., “Topology and mechanics: 1”, Invent. Math., 10:4 (1970), 305–331

[15] Sokolov V. V., “Novyi integriruemyi sluchai dlya uravnenii Kirkhgofa”, TMF, 129:1 (2001), 31–37

[16] Sokolov V. V., Tsyganov A. V., “Pary Laksa dlya deformirovannykh volchkov Kovalevskoi i Goryacheva – Chaplygina”, TMF, 131:1 (2002), 118–125

[17] Fomenko A. T., Simplekticheskaya geometriya: Metody i prilozheniya, MGU, Moskva, 1988, 413 pp.

[18] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. Matem., 54:3 (1990), 546–575

[19] Kharlamov M. P., “Bifurkatsii sovmestnykh urovnei pervykh integralov v sluchae Kovalevskoi”, PMM, 47:6 (1983), 922–930

[20] Kharlamov M. P., “Kriticheskie podsistemy girostata Kovalevskoi v dvukh postoyannykh polyakh”, Nelineinaya dinamika, 3:3 (2007), 331–348

[21] Kharlamov M. P., “Kriticheskoe mnozhestvo i bifurkatsionnaya diagramma zadachi o dvizhenii volchka Kovalevskoi v dvoinom pole”, MTT, 2004, no. 34, 47–58

[22] Kharlamov M. P., “Obobschenie 4-go klassa Appelrota: Oblast suschestvovaniya dvizhenii i razdelenie peremennykh”, Nelineinaya dinamika, 2:4 (2006), 453–472

[23] Kharlamov M. P., “Simmetriya v sistemakh s giroskopicheskimi silami”, MTT, 1983, no. 15, 87–93

[24] Kharlamov M. P., Ryabov P. E., “Diagrammy Smeila – Fomenko i grubye invarianty sluchaya Kovalevskoi – Yakhya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 4, 40–59

[25] Kharlamov M. P., Ryabov P. E., Kharlamova I. I., Savushkin A. Yu., Shvedov E. G., Topologicheskii atlas girostata Kovalevskoi – Yakhya: Analiticheskie rezultaty i topologicheskii analiz, 2014, arXiv: 1411.6248

[26] Kharlamov M. P., Kharlamova I. I., Shvedov E. G., “Bifurkatsionnye diagrammy na izoenergeticheskikh urovnyakh girostata Kovalevskoi – Yakhya”, MTT, 2010, no. 40, 77–90

[27] Kharlamov P. V., Lektsii po dinamike tverdogo tela, NGU, Novosibirsk, 1965, 221 pp.

[28] Kharlamova I. I., Ryabov P. E., “Elektronnyi atlas bifurkatsionnykh diagramm girostata Kovalevskoi – Yakhya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 2, 147–162

[29] Bolsinov A. V., Borisov A. V., Mamaev I. S., “The bifurcation analysis and the Conley index in mechanics”, Regul. Chaotic Dyn., 17:5 (2012), 457–478

[30] Borisov A. V., Mamaev I. S., “Topological analysis of an integrable system related to the rolling of a ball on a sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371

[31] Borisov A. V., Mamaev I. S., Kholmskaya A. G., “Kovalevskaya top and generalizations of integrable systems”, Regul. Chaotic Dyn., 6:1 (2001), 1–16

[32] Clebsch A., “Über die Bewegung eines Körpers in einer Flüssigkeit”, Math. Ann., 3:1 (1870), 238–262

[33] Dragović V., Kukić K., “Systems of Kowalevski type and discriminantly separable polynomials”, Regul. Chaotic Dyn., 19:2 (2014), 162–184

[34] Dragović V., Kukić K., “The Sokolov case, integrable Kirchhoff elasticae, and genus 2 theta functions via discriminantly separable polynomials”, Proc. Steklov Inst. Math., 286:1 (2014), 224–239

[35] Jacob A., “Invariant manifolds in the motion of a rigid body about a fixed point”, Rev. Roumaine Math. Pures Appl., 16:10 (1971), 1497–1521

[36] Jurdjevic V., “Integrable Hamiltonian systems on Lie groups: Kowalewski type”, Ann. of Math. (2), 150:2 (1999), 605–644

[37] Kötter F., “Sur le cas traité par M-me Kowalevski de rotation d'un corps solide pesant autour d'un point fixe”, Acta Math., 17:1 (1893), 209–263

[38] Kharlamov M. P., “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regul. Chaotic Dyn., 10:4 (2005), 381–398

[39] Kharlamov M. P., “Extensions of the Appelrot classes for the generalized gyrostat in a double force field”, Regul. Chaotic Dyn., 19:2 (2014), 226–244

[40] Komarov I. V., Kuznetsov V. B., “Kowalewski's top on the Lie algebras $o(4)$, $e(3)$ and $o(3,1)$”, J. Phys. A, 23:6 (1990), 841–846

[41] Komarov I. V., Sokolov V. V., Tsiganov A. V., “Poisson maps and integrable deformations of the Kowalevski top”, J. Phys. A, 36:29 (2003), 8035–8048

[42] Lerman L. M., Umanskiǐ Ya. L., “Structure of the Poisson action of $\mathbf{R}^2$ on a four-dimensional symplectic manifold: 1”, Selecta Math. Sov., 6:4 (1987), 365–396; Лерман Л. М., Уманский Я. Л., “Структура пуассоновского действия $\mathbf{R}^2$ на четырехмерном симплектическом многообразии”, Деп.в ВИНИТИ 10.07.81, No 3427-81, 1981, ГГУ, Горький, 51 с.

[43] Oshemkov A. A., “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. semin. po vekt. i tenz. analizu, 25 (1993), 23–109

[44] Ryabov P. E., “Bifurkatsii pervykh integralov v sluchae Sokolova”, TMF, 134:2 (2003), 207–226

[45] Sokolov V. V., “A generalized Kowalewski Hamiltonian and new integrable cases on $e(3)$ and $so(4)$”, Kowalevski property, CRM Proc. Lecture Notes, 32, ed. V. B. Kuznetsov, AMS, Providence, R.I., 2002, 304–315

[46] Yehia H. M., “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172

[47] Yehia H. M., “On certain integrable motions of a rigid body acted upon by gravity and magnetic fields”, Internat. J. Non-Linear Mech., 36:7 (2001), 1173–1175