The Jacobi integral in nonholonomic mechanics
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 377-396.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss conditions for the existence of the Jacobi integral (that generalizes energy) in systems with inhomogeneous and nonholonomic constraints. As an example, we consider in detail the problem of motion of the Chaplygin sleigh on a rotating plane and the motion of a dynamically symmetric ball on a uniformly rotating surface. In addition, we discuss illustrative mechanical models based on the motion of a homogeneous ball on a rotating table and on the Beltrami surface.
Keywords: nonholonomic constraint, Jacobi integral, Chaplygin sleigh, rotating table, Suslov problem.
@article{ND_2015_11_2_a11,
     author = {A. V. Borisov and I. S. Mamaev and I. A. Bizyaev},
     title = {The {Jacobi} integral in nonholonomic mechanics},
     journal = {Russian journal of nonlinear dynamics},
     pages = {377--396},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a11/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
AU  - I. A. Bizyaev
TI  - The Jacobi integral in nonholonomic mechanics
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 377
EP  - 396
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_2_a11/
LA  - ru
ID  - ND_2015_11_2_a11
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%A I. A. Bizyaev
%T The Jacobi integral in nonholonomic mechanics
%J Russian journal of nonlinear dynamics
%D 2015
%P 377-396
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_2_a11/
%G ru
%F ND_2015_11_2_a11
A. V. Borisov; I. S. Mamaev; I. A. Bizyaev. The Jacobi integral in nonholonomic mechanics. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 377-396. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a11/

[1] Fassò F., Sansonetto N., Conservation of ‘moving’ energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces, 2015, arXiv: 1503.06661

[2] Fassò F., Sansonetto N., Conservation of energy and momenta in nonholonomic systems with affine constraints, 2015, arXiv: 1505.01172

[3] García-Naranjo L. C., Maciejewski A. J., Marrero J. C., Przybylska M., “The inhomogeneous Suslov problem”, Phys. Lett. A, 378:32–33 (2014), 2389–2394

[4] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219

[5] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, Moskva, 1967, 519 pp.

[6] Kozlov V. V., “O suschestvovanii integralnogo invarianta gladkikh dinamicheskikh sistem”, PMM, 51:4 (1987), 538–545

[7] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490

[8] Rashevskii P. K., Kurs differentsialnoi geometrii, GITTL, Moskva – Leningrad, 1956, 421 pp.

[9] Raus E. Dzh., Dinamika sistemy tverdykh tel, V 2-kh tt., Nauka, Moskva, 1983, 464 s.; 544 pp.

[10] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116

[11] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 2015 (to appear)

[12] Carathéodory C., “Der Schlitten”, Z. Angew. Math. Mech., 13:2 (1933), 71–76

[13] Borisov A. V., Mamaev I. S., “Dinamika sanei Chaplygina”, PMM, 73:2 (2009), 219–225

[14] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Rolling of a ball without spinning on a plane: The absence of an invariant measure in a system with a complete set of integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579

[15] Bizyaev I. A., “O neintegriruemosti i prepyatstviyakh k gamiltonizatsii negolonomnogo volchka Chaplygina”, Dokl. RAN, 458:4 (2014), 398–401

[16] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464

[17] Bottema O., “On the small vibrations of nonholonomic systems”, Indag. Math., 11 (1949), 296–298

[18] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328

[19] Borisov A. V., Mamaev I. S., Kilin A. A., “Dynamics of rolling disk”, Regul. Chaotic Dyn., 8:2 (2003), 201–212

[20] Borisov A. V., Mamaev I. S., “Rolling of a rigid body on plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200

[21] Earnshaw S., Dynamics, or An elementary treatise on motion, 3rd ed., Deighton, Cambridge, 1844, 396 pp.

[22] Milne E. A., Vectorial mechanics, Interscience, New York, 1948, 400 pp.

[23] Burns J. A., “Ball rolling on a turntable: Analog for charged particle dynamics”, Amer. J. Phys., 48:1 (1981), 56–58

[24] Ehrlich R., Tuszynski J., “Ball on a rotating turntable: Comparison of theory and experiment”, Amer. J. Phys., 63:4 (1995), 351–359

[25] Gersten J., Soodak H., Tiersten M. S., “Ball moving on stationary or rotating horizontal surface”, Amer. J. Phys., 60:1 (1992), 43–47

[26] Sokirko A. V., Belopolskii A. A., Matytsyn A. V., Kossakowski D. A., “Behavior of a ball on the surface of a rotating disk”, Amer. J. Phys., 62:2 (1994), 151–156

[27] Soodak H., Tiersten M. S., “Perturbation analysis of rolling friction on a turntable”, Amer. J. Phys., 64:9 (1996), 1130–1139

[28] Weckesser W., “A ball rolling on a freely spinning turntable”, Amer. J. Phys., 65:8 (1997), 736–738

[29] Weltner K., “Stable circular orbits of freely moving balls on rotating discs”, Amer. J. Phys., 47:11 (1979), 984–986

[30] Fufaev N. A., “Katanie tyazhelogo odnorodnogo shara po sherokhovatoi sfere, vraschayuscheisya vokrug vertikalnoi osi”, Prikl. mekhan., 23:1 (1987), 98–101

[31] Fufaev N. A., “Katanie shara po gorizontalnoi vraschayuscheisya ploskosti”, PMM, 47:1 (1983), 43–47

[32] Tokieda T., “Roll models”, Amer. Math. Monthly, 120:3 (2013), 265–282

[33] Kozlov V. V., “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7:2 (2002), 191–176

[34] Hermans J., “A symmetric sphere rolling on a surface”, Nonlinearity, 8:4 (1995), 493–515

[35] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, RKhD, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2005, 576 pp.

[36] Fedorov Yu. N., Kozlov V. V., “Various aspects of $n$-dimensional rigid body dynamics”, Amer. Math. Soc. Transl. Ser. 2, 168 (1995), 141–171

[37] Vierkandt A., “Über gleitende und rollende Bewegung”, Monatsh. Math. Phys., 3:1 (1892), 31–38, 97–116

[38] Ferrario C., Passerini A., “Rolling rigid bodies and forces of constraint: An application to affine nonholonomic systems”, Meccanica, 35:5 (2000), 433–442

[39] Borisov A. V., Kilin A. A., Mamaev I. S., “Rolling of a homogeneous ball over a dynamically asymmetric sphere”, Regul. Chaotic Dyn., 16:5 (2011), 465–483

[40] Lewis A. D., Murray R. M., “Variational principles for constrained systems: Theory and experiment”, Int. J. Non-Linear Mech., 30:6 (1995), 793–815

[41] Favretti M., “Equivalence of dynamics for nonholonomic systems with transverse constraints”, J. Dyn. Diff. Equat., 10:4 (1998), 511–536