Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_2_a11, author = {A. V. Borisov and I. S. Mamaev and I. A. Bizyaev}, title = {The {Jacobi} integral in nonholonomic mechanics}, journal = {Russian journal of nonlinear dynamics}, pages = {377--396}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a11/} }
TY - JOUR AU - A. V. Borisov AU - I. S. Mamaev AU - I. A. Bizyaev TI - The Jacobi integral in nonholonomic mechanics JO - Russian journal of nonlinear dynamics PY - 2015 SP - 377 EP - 396 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2015_11_2_a11/ LA - ru ID - ND_2015_11_2_a11 ER -
A. V. Borisov; I. S. Mamaev; I. A. Bizyaev. The Jacobi integral in nonholonomic mechanics. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 377-396. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a11/
[1] Fassò F., Sansonetto N., Conservation of ‘moving’ energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces, 2015, arXiv: 1503.06661
[2] Fassò F., Sansonetto N., Conservation of energy and momenta in nonholonomic systems with affine constraints, 2015, arXiv: 1505.01172
[3] García-Naranjo L. C., Maciejewski A. J., Marrero J. C., Przybylska M., “The inhomogeneous Suslov problem”, Phys. Lett. A, 378:32–33 (2014), 2389–2394
[4] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219
[5] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, Moskva, 1967, 519 pp.
[6] Kozlov V. V., “O suschestvovanii integralnogo invarianta gladkikh dinamicheskikh sistem”, PMM, 51:4 (1987), 538–545
[7] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490
[8] Rashevskii P. K., Kurs differentsialnoi geometrii, GITTL, Moskva – Leningrad, 1956, 421 pp.
[9] Raus E. Dzh., Dinamika sistemy tverdykh tel, V 2-kh tt., Nauka, Moskva, 1983, 464 s.; 544 pp.
[10] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116
[11] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 2015 (to appear)
[12] Carathéodory C., “Der Schlitten”, Z. Angew. Math. Mech., 13:2 (1933), 71–76
[13] Borisov A. V., Mamaev I. S., “Dinamika sanei Chaplygina”, PMM, 73:2 (2009), 219–225
[14] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Rolling of a ball without spinning on a plane: The absence of an invariant measure in a system with a complete set of integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579
[15] Bizyaev I. A., “O neintegriruemosti i prepyatstviyakh k gamiltonizatsii negolonomnogo volchka Chaplygina”, Dokl. RAN, 458:4 (2014), 398–401
[16] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464
[17] Bottema O., “On the small vibrations of nonholonomic systems”, Indag. Math., 11 (1949), 296–298
[18] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328
[19] Borisov A. V., Mamaev I. S., Kilin A. A., “Dynamics of rolling disk”, Regul. Chaotic Dyn., 8:2 (2003), 201–212
[20] Borisov A. V., Mamaev I. S., “Rolling of a rigid body on plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200
[21] Earnshaw S., Dynamics, or An elementary treatise on motion, 3rd ed., Deighton, Cambridge, 1844, 396 pp.
[22] Milne E. A., Vectorial mechanics, Interscience, New York, 1948, 400 pp.
[23] Burns J. A., “Ball rolling on a turntable: Analog for charged particle dynamics”, Amer. J. Phys., 48:1 (1981), 56–58
[24] Ehrlich R., Tuszynski J., “Ball on a rotating turntable: Comparison of theory and experiment”, Amer. J. Phys., 63:4 (1995), 351–359
[25] Gersten J., Soodak H., Tiersten M. S., “Ball moving on stationary or rotating horizontal surface”, Amer. J. Phys., 60:1 (1992), 43–47
[26] Sokirko A. V., Belopolskii A. A., Matytsyn A. V., Kossakowski D. A., “Behavior of a ball on the surface of a rotating disk”, Amer. J. Phys., 62:2 (1994), 151–156
[27] Soodak H., Tiersten M. S., “Perturbation analysis of rolling friction on a turntable”, Amer. J. Phys., 64:9 (1996), 1130–1139
[28] Weckesser W., “A ball rolling on a freely spinning turntable”, Amer. J. Phys., 65:8 (1997), 736–738
[29] Weltner K., “Stable circular orbits of freely moving balls on rotating discs”, Amer. J. Phys., 47:11 (1979), 984–986
[30] Fufaev N. A., “Katanie tyazhelogo odnorodnogo shara po sherokhovatoi sfere, vraschayuscheisya vokrug vertikalnoi osi”, Prikl. mekhan., 23:1 (1987), 98–101
[31] Fufaev N. A., “Katanie shara po gorizontalnoi vraschayuscheisya ploskosti”, PMM, 47:1 (1983), 43–47
[32] Tokieda T., “Roll models”, Amer. Math. Monthly, 120:3 (2013), 265–282
[33] Kozlov V. V., “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7:2 (2002), 191–176
[34] Hermans J., “A symmetric sphere rolling on a surface”, Nonlinearity, 8:4 (1995), 493–515
[35] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, RKhD, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2005, 576 pp.
[36] Fedorov Yu. N., Kozlov V. V., “Various aspects of $n$-dimensional rigid body dynamics”, Amer. Math. Soc. Transl. Ser. 2, 168 (1995), 141–171
[37] Vierkandt A., “Über gleitende und rollende Bewegung”, Monatsh. Math. Phys., 3:1 (1892), 31–38, 97–116
[38] Ferrario C., Passerini A., “Rolling rigid bodies and forces of constraint: An application to affine nonholonomic systems”, Meccanica, 35:5 (2000), 433–442
[39] Borisov A. V., Kilin A. A., Mamaev I. S., “Rolling of a homogeneous ball over a dynamically asymmetric sphere”, Regul. Chaotic Dyn., 16:5 (2011), 465–483
[40] Lewis A. D., Murray R. M., “Variational principles for constrained systems: Theory and experiment”, Int. J. Non-Linear Mech., 30:6 (1995), 793–815
[41] Favretti M., “Equivalence of dynamics for nonholonomic systems with transverse constraints”, J. Dyn. Diff. Equat., 10:4 (1998), 511–536