The Jacobi integral in nonholonomic mechanics
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 377-396
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we discuss conditions for the existence of the Jacobi integral (that generalizes
energy) in systems with inhomogeneous and nonholonomic constraints. As an example, we
consider in detail the problem of motion of the Chaplygin sleigh on a rotating plane and the
motion of a dynamically symmetric ball on a uniformly rotating surface. In addition, we discuss
illustrative mechanical models based on the motion of a homogeneous ball on a rotating table
and on the Beltrami surface.
Keywords:
nonholonomic constraint, Jacobi integral, Chaplygin sleigh, rotating table, Suslov problem.
@article{ND_2015_11_2_a11,
author = {A. V. Borisov and I. S. Mamaev and I. A. Bizyaev},
title = {The {Jacobi} integral in nonholonomic mechanics},
journal = {Russian journal of nonlinear dynamics},
pages = {377--396},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a11/}
}
TY - JOUR AU - A. V. Borisov AU - I. S. Mamaev AU - I. A. Bizyaev TI - The Jacobi integral in nonholonomic mechanics JO - Russian journal of nonlinear dynamics PY - 2015 SP - 377 EP - 396 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2015_11_2_a11/ LA - ru ID - ND_2015_11_2_a11 ER -
A. V. Borisov; I. S. Mamaev; I. A. Bizyaev. The Jacobi integral in nonholonomic mechanics. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 377-396. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a11/