The eyeball ROV: Design and control of a spherical underwater vehicle steered by an internal eccentric mass
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 4, pp. 513-531.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Remotely Operated Vehicle (ROV) is developed for use in the inspection of underwater structures in hazardous environments. The vehicle presented can change orientation like an eyeball using a novel gimbal mechanism for moving an internal eccentric mass. Combined with a pair of thrusters, the Eyeball ROV can move in any direction with non-holonomic constraints. In this paper the design concept is presented first, followed by dynamic and hydrodynamic analysis. Due to poor open loop stability characteristics, stability a ugmentation is implemented using onboard sensors and was de signed and tested in simulation. A physical proof-of-concept prototype is also presented.
@article{ND_2014_10_4_a9,
     author = {Ian C. Rust and H. Harry Asada},
     title = {The eyeball {ROV:} {Design} and control of a spherical underwater vehicle steered by an internal eccentric mass},
     journal = {Russian journal of nonlinear dynamics},
     pages = {513--531},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_4_a9/}
}
TY  - JOUR
AU  - Ian C. Rust
AU  - H. Harry Asada
TI  - The eyeball ROV: Design and control of a spherical underwater vehicle steered by an internal eccentric mass
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 513
EP  - 531
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_4_a9/
LA  - ru
ID  - ND_2014_10_4_a9
ER  - 
%0 Journal Article
%A Ian C. Rust
%A H. Harry Asada
%T The eyeball ROV: Design and control of a spherical underwater vehicle steered by an internal eccentric mass
%J Russian journal of nonlinear dynamics
%D 2014
%P 513-531
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_4_a9/
%G ru
%F ND_2014_10_4_a9
Ian C. Rust; H. Harry Asada. The eyeball ROV: Design and control of a spherical underwater vehicle steered by an internal eccentric mass. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 4, pp. 513-531. http://geodesic.mathdoc.fr/item/ND_2014_10_4_a9/

[1] Fair N., Chave A. D., Freitag L., Preisig J., White S. N., Yoerger D., Sonnichsen F., “Optical modem technology for seafloor observatories”, Proc. of the Conf. MTS/IEEE «Oceans 2006» (Boston, Mass., 18–21 Sept. 2006), 6 pp.

[2] Halme A., Suomela J., Schonberg T., Wang Y., “A spherical mobile micro-robot for scientific applications”, Proc. of the 4th ESA Workshop on Advanced Space Technologies for Robot Applications (Noordwijk, 1996), 321–327

[3] Javadi A. H., Mojabi P., “Introducing August: A novel strategy for an omnidirectional spherical rolling robot”, Proc. of the 2002 IEEE Internat. Conf. on Robotics Automation (Washington, D.C., May 2002), v. 4, 3527–3533

[4] Longuski J. M., Panagiotis T., “Spin-axis stabilization of symmetric spacecraft with two control torques”, Syst. Control Lett., 23 (1993), 395–402 | MR

[5] Fossen Th. I., Guidance and control of ocean vehicles, Wiley, Chichester, 1994, 494 pp.

[6] Siciliano B., Khatib O., Groen F., Underwater robots: Motion and force control of vehicle-manipulator systems, Springer Tracts in Advanced Robotics, 2, 2nd ed., Springer, New York, 2006, 268 pp.

[7] Korotkin A. I., Added mass of ship structures, Fluid Mech. Appl., 88, Springer, New York, 2009, 404 pp.

[8] Podder T. K., Antonelli G., Sarkar N., “Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation”, IEEE Trans. Robot. Automat., 18:2 (2002), 223–233 | DOI

[9] Podder T. K., Antonelli G., Sarkar N., “Fault tolerant control of an autonomous underwater vehicle under thrust redundancy: Simulation and experiments”, Proc. of the 2000 IEEE Internat. Conf. on Robotics and Automation (San Francisco, Calif., April 24–28, 2000), v. 2, 1251–1256

[10] White F. M., Fluid mechanics, 4th ed., McGraw-Hill, Boston, 1999, 1023 pp.