Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2014_10_4_a5, author = {Ivan Yu. Polekhin}, title = {Examples of topological approach to the problem of inverted pendulum with moving pivot point}, journal = {Russian journal of nonlinear dynamics}, pages = {465--472}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2014_10_4_a5/} }
TY - JOUR AU - Ivan Yu. Polekhin TI - Examples of topological approach to the problem of inverted pendulum with moving pivot point JO - Russian journal of nonlinear dynamics PY - 2014 SP - 465 EP - 472 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2014_10_4_a5/ LA - ru ID - ND_2014_10_4_a5 ER -
Ivan Yu. Polekhin. Examples of topological approach to the problem of inverted pendulum with moving pivot point. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 4, pp. 465-472. http://geodesic.mathdoc.fr/item/ND_2014_10_4_a5/
[1] Courant R., Robbins H., What is mathematics?: An elementary approach to ideas and methods, 2nd ed., Oxford Univ. Press, New York, 1996, 592 pp. | MR | Zbl
[2] Arnold V. I., Chto takoe matematika?, MTsNMO, M., 2002, 104 pp.
[3] Srzednicki R., Wójcik K., Zgliczyński P., “Fixed point results based on the Ważewski method”, Handbook of topological fixed point theory, eds. R. Brown, M. Furi, L. Górniewicz, B. Jiang, Springer, Dordrecht, 2005, 905–943 | DOI | MR
[4] Ważewski T., “Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires”, Ann. Soc. Polon. Math., 20 (1947), 279–313 | MR
[5] Hartman Ph., Ordinary differential equations, Classics Appl. Math., 38, Wiley, New York, 1964, 612 pp. | MR
[6] Reissig R., Sansone G., Conti R., Qualitative Theorie nichtlinearer Differentialgleichungen, Edizioni Cremonese, Rome, 1963, 381 pp. | MR | Zbl