Simplifying the structure of the third and fourth degree forms in the expansion of the Hamiltonian with a linear transformation
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 4, pp. 447-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the canonical differential equations describing the motion of a system with one degree of freedom. The origin of the phase space is assumed to be an equilibrium position of the system. It is supposed that in a sufficiently small neighborhood of the equilibrium Hamiltonian function can be represented by a convergent series. This series does not include terms of the second degree, and the terms of the third and fourth degrees are independent of time. Linear real canonical transformations leading the terms of the third and fourth degrees to the simplest forms are found. Classification of the systems in question being obtained on the basis of these forms is used in the discussion of the stability of the equilibrium position.
Keywords: Hamiltonian system, canonical transformation, stability.
@article{ND_2014_10_4_a4,
     author = {Anatoly P. Markeev},
     title = {Simplifying the structure of the third and fourth degree forms in the expansion of the {Hamiltonian} with a linear transformation},
     journal = {Russian journal of nonlinear dynamics},
     pages = {447--464},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_4_a4/}
}
TY  - JOUR
AU  - Anatoly P. Markeev
TI  - Simplifying the structure of the third and fourth degree forms in the expansion of the Hamiltonian with a linear transformation
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 447
EP  - 464
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_4_a4/
LA  - ru
ID  - ND_2014_10_4_a4
ER  - 
%0 Journal Article
%A Anatoly P. Markeev
%T Simplifying the structure of the third and fourth degree forms in the expansion of the Hamiltonian with a linear transformation
%J Russian journal of nonlinear dynamics
%D 2014
%P 447-464
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_4_a4/
%G ru
%F ND_2014_10_4_a4
Anatoly P. Markeev. Simplifying the structure of the third and fourth degree forms in the expansion of the Hamiltonian with a linear transformation. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 4, pp. 447-464. http://geodesic.mathdoc.fr/item/ND_2014_10_4_a4/

[1] Merman G. A., “O neustoichivosti periodicheskogo resheniya kanonicheskoi sistemy s odnoi stepenyu svobody v sluchae glavnogo rezonansa”, Problemy dvizheniya iskusstvennykh nebesnykh tel, AN SSSR, M., 1963, 18–41

[2] Kamenkov G. V., Izbrannye trudy, v. 2, Nauka, M., 1972, 214 pp.

[3] Mustakhishev K. M., “K voprosu ob ustoichivosti gamiltonovykh sistem”, Izv. AN Kazakhskoi SSR. Ser. Fiz.-matem., 1967, no. 1, 63–73 | MR

[4] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[5] Meissner E., “Über Schüttelerscheinungen in Systemen mit periodisch veränderlicher Elastizität”, Schweizerische Bauzeitung, 72:11 (1918), 95–98

[6] van der Pol B., Strutt M. J. O., “On the stability of solutions of Mathieu's equation”, Philos. Mag., 5 (1928), 18–38 | DOI | Zbl

[7] Strett M. D. O., Funktsii Lyame, Mate i rodstvennye im v fizike i tekhnike, Gosizdat Ukrainy, Kharkov–Kiev, 1935, 238 pp.

[8] Markeev A. P., “O nelineinom uravnenii Meissnera”, Nelineinaya dinamika, 7:3 (2011), 531–547

[9] Markeev A. P., “O dvizhenii svyazannykh mayatnikov”, Nelineinaya dinamika, 9:1 (2013), 27–38 | MR | Zbl

[10] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2009, 672 pp.

[11] Markeev A. P., Teoreticheskaya mekhanika, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2007, 592 pp.

[12] Veissenberg A. N., “Kriterii znakoopredelennosti form vysshego poryadka”, PMM, 1974, no. 3, 571–574

[13] Kurosh A. G., Kurs vysshei algebry, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2003, 432 pp.

[14] Dzhakalya G. E. O., Metody teorii vozmuschenii dlya nelineinykh sistem, Nauka, M., 1979, 319 pp.

[15] Markeev A. P., “O sokhranyayuschikh ploschad otobrazheniyakh i ikh primenenii v dinamike sistem s soudareniyami”, MTT, 1996, no. 2, 37–54 | MR

[16] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 532 pp.

[17] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, M., 1973, 168 pp.