Dynamics of coupled chaotic oscillators: from chaos to quasiperiodicity
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 4, pp. 387-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ensembles of several chaotic Rössler oscillators are considered. It is shown that a typical phenomenon for such systems is the emergence of invariant tori of different and sufficiently high dimension. The possibility of a quasi-periodic Hopf bifurcation and of the cascade of such bifurcations based on tori of increasing dimension is demonstrated. The domains of resonant tori are revealed whose boundaries correspond to a saddle-node bifurcation. Within areas of resonant modes the torus-doubling bifurcations and tori destruction are observed.
Mots-clés : chaos, quasiperiodic oscillations, invariant tori, bifurcations.
Keywords: Lyapunov exponents
@article{ND_2014_10_4_a0,
     author = {Alexander P. Kuznetsov and Natalia A. Migunova and Igor R. Sataev and Julia V. Sedova and Ludmila V. Turukina},
     title = {Dynamics of coupled chaotic oscillators: from chaos to quasiperiodicity},
     journal = {Russian journal of nonlinear dynamics},
     pages = {387--405},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_4_a0/}
}
TY  - JOUR
AU  - Alexander P. Kuznetsov
AU  - Natalia A. Migunova
AU  - Igor R. Sataev
AU  - Julia V. Sedova
AU  - Ludmila V. Turukina
TI  - Dynamics of coupled chaotic oscillators: from chaos to quasiperiodicity
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 387
EP  - 405
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_4_a0/
LA  - ru
ID  - ND_2014_10_4_a0
ER  - 
%0 Journal Article
%A Alexander P. Kuznetsov
%A Natalia A. Migunova
%A Igor R. Sataev
%A Julia V. Sedova
%A Ludmila V. Turukina
%T Dynamics of coupled chaotic oscillators: from chaos to quasiperiodicity
%J Russian journal of nonlinear dynamics
%D 2014
%P 387-405
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_4_a0/
%G ru
%F ND_2014_10_4_a0
Alexander P. Kuznetsov; Natalia A. Migunova; Igor R. Sataev; Julia V. Sedova; Ludmila V. Turukina. Dynamics of coupled chaotic oscillators: from chaos to quasiperiodicity. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 4, pp. 387-405. http://geodesic.mathdoc.fr/item/ND_2014_10_4_a0/

[1] Heinrich G., Ludwig M., Qian J., Kubala B., Marquardt F., “Collective dynamics in optomechanical arrays”, Phys. Rev. Lett., 107:4 (2011), 043603, 4 pp. | DOI | MR

[2] Zhang M., Wiederhecker G. S., Manipatruni S., Barnard A., McEuen P., Lipson M., “Synchronization of micromechanical oscillators using light”, Phys. Rev. Lett., 109:23 (2012), 233906, 5 pp. | DOI

[3] Temirbayev A. A., Nalibayev Ye. D., Zhanabaev Z. Zh., Ponomarenko V. I., Rosenblum M. G., “Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: An experimental study”, Phys. Rev. E, 87:6 (2013), 062917, 11 pp. | DOI

[4] Martens E. A., Thutupalli S., Fourrière A., Hallatschek O., “Chimera states in mechanical oscillator networks”, Proc. Natl. Acad. Sci. USA, 110 (2013), 10563–10567 | DOI

[5] Tinsley M. R., Nkomo S., Showalter K., “Chimera and phase-cluster states in populations of coupled chemical oscillators”, Nature Phys., 8:9 (2012), 662–665 | DOI

[6] Vlasov V., Pikovsky A., “Synchronization of a Josephson junction array in terms of global variables”, Phys. Rev. E, 88:2 (2013), 022908, 5 pp. | DOI

[7] Lee T. E., Cross M. C., “Pattern formation with trapped ions”, Phys. Rev. Lett., 106:14 (2011), 143001, 4 pp. | DOI

[8] Lee T. E., Sadeghpour H. R., “Quantum synchronization of quantum van der Pol oscillators with trapped ions”, Phys. Rev. Lett., 111:23 (2013), 234101, 5 pp. | DOI

[9] Grebogi C., Ott E., Yorke J. A., “Attractors on an $N$-torus: Quasiperiodicity versus chaos”, Phys. D, 15:3 (1985), 354–373 | DOI | MR | Zbl

[10] Linsay P. S., Cumming A. W., “Three-frequency quasiperiodicity, phase locking, and the onset of chaos”, Phys. D, 40:2 (1989), 196–217 | DOI | MR | Zbl

[11] Battelino P. M., Grebogi C., Ott E., Yorke J. A., “Chaotic attractors on a $3$-torus, and torus break-up”, Phys. D, 39:2–3 (1989), 299–314 | DOI | MR | Zbl

[12] Baesens S., Guckenheimer J., Kim S., MacKay R. S., “Three coupled oscillators: mode locking, global bifurcations and toroidal chaos”, Phys. D, 49:3 (1991), 387–475 | DOI | MR | Zbl

[13] Emelianova Yu. P., Kuznetsov A. P., Sataev I. R., Turukina L. V., “Synchronization and multi-frequency oscillations in the low-dimensional chain of the self-oscillators”, Phys. D, 244:1 (2013), 36–49 | DOI | Zbl

[14] Kuznetsov A. P., Kuznetsov S. P., Sataev I. R., Turukina L. V., “About Landau–Hopf scenario in a system of coupled self-oscillators”, Phys. Lett. A, 377:45–48 (2013), 3291–3295 | DOI | MR | Zbl

[15] Emelianova Yu. P., Kuznetsov A. P., Turukina L. V., Sataev I. R., Chernyshov N. Yu., “A structure of the oscillation frequencies parameter space for the system of dissipatively coupled oscillators”, Commun. Nonlinear Sci. Numer. Simul., 19:4 (2014), 1203–1212 | DOI | MR

[16] Xiao-Wen L., Zhi-Gang Zh., “Phase synchronization of coupled Rössler oscillators: Amplitude effect”, Commun. Theor. Phys., 47:2 (2007), 265–269 | DOI

[17] Pazó D., Sánchez E., Matías M. A., “Transition to high-dimensional chaos through quasiperiodic motion”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11:10 (2001), 2683–2688 | DOI

[18] Pazó D., Matías M. A., “Direct transition to high-dimensional chaos through a global bifurcation”, Europhys. Lett., 72:2 (2005), 176–182 | DOI | MR

[19] Rosenblum M. G., Pikovsky A. S., Kurths J., “Phase synchronization of chaotic oscillators”, Phys. Rev. Lett., 76:11 (1996), 1804–1807 | DOI

[20] Osipov G. V., Pikovsky A. S., Rosenblum M. G., Kurths J., “Phase synchronization effects in a lattice of nonidentical Rössler oscillators”, Phys. Rev. E (3), 55:3, part A (1997), 2353–2361 | DOI | MR

[21] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A universal concept in nonlinear sciences, Cambridge Nonlinear Sci. Ser., 12, Cambridge Univ. Press, Cambridge, 2001, 432 pp. | MR | Zbl

[22] Vitolo R., Broer H., Simó C., “Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms”, Nonlinearity, 23:8 (2010), 1919–1947 | DOI | MR | Zbl

[23] Broer H., Simó C., Vitolo R., “Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance «bubble»”, Phys. D, 237:13 (2008), 1773–1799 | DOI | MR | Zbl

[24] Broer H., Simó C., Vitolo R., “The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol'd resonance web”, Bull. Belg. Math. Soc. Simon Stevin, 15:5, Dynamics in perturbations (2008), 769–787 | MR | Zbl

[25] Vitolo R., Broer H., Simó C., “Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems”, Regul. Chaotic Dyn., 16:1–2 (2011), 154–184 | DOI | MR | Zbl

[26] Landau L. D., “K probleme turbulentnosti”, Dokl. AN SSSR, 44:8 (1944), 339–342

[27] Hopf E., “A mathematical example displaying the features of turbulence”, Comm. Pure Appl. Math., 1:4 (1948), 303–322 | DOI | MR | Zbl

[28] Kuznetsov S. P., Hyperbolic chaos: A physicist's view, Springer, Berlin, 2012, 336 pp.