Evolution of three-dimensional picture of disturbances imposed on~a~rotational-axial flow in a cylindrical clearance
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 345-354.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work deals with stability relative to three-dimensional disturbances of a compound rotational-axial shear flow of Newtonian viscous fluid inside a cylindrical clearance. The corresponding linearized problem on stability is stated with the sticking conditions. On the basis of the integral relation method permitting to obtain sufficient estimates of stability as well as lower estimates for critical Reynolds numbers, the general upper estimate of real part of a spectral parameter (responding to stability) is derived. This estimate is defined more exactly for cases of both three-dimensional axially symmetric disturbances and two-dimensional non-axially symmetric ones.
Keywords: Newtonian fluid, cylindrical clearance, shear flow, the integral relation method, quadratic functional, variational inequality, stability, critical Reynolds number.
Mots-clés : rotation
@article{ND_2014_10_3_a7,
     author = {Dmitrii V. Georgievskii},
     title = {Evolution of three-dimensional picture of disturbances imposed on~a~rotational-axial flow in a cylindrical clearance},
     journal = {Russian journal of nonlinear dynamics},
     pages = {345--354},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a7/}
}
TY  - JOUR
AU  - Dmitrii V. Georgievskii
TI  - Evolution of three-dimensional picture of disturbances imposed on~a~rotational-axial flow in a cylindrical clearance
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 345
EP  - 354
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a7/
LA  - ru
ID  - ND_2014_10_3_a7
ER  - 
%0 Journal Article
%A Dmitrii V. Georgievskii
%T Evolution of three-dimensional picture of disturbances imposed on~a~rotational-axial flow in a cylindrical clearance
%J Russian journal of nonlinear dynamics
%D 2014
%P 345-354
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a7/
%G ru
%F ND_2014_10_3_a7
Dmitrii V. Georgievskii. Evolution of three-dimensional picture of disturbances imposed on~a~rotational-axial flow in a cylindrical clearance. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 345-354. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a7/

[1] Drazin F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005, 288 pp.

[2] Betchov R., Kriminale V., Voprosy gidrodinamicheskoi ustoichivosti, Mir, M., 1971, 354 pp. | Zbl

[3] Kozyrev O. R., Stepanyants Yu. A., “Metod integralnykh sootnoshenii v lineinoi teorii gidrodinamicheskoi ustoichivosti”, Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza, 25, VINITI, M., 1991, 3–89 | MR

[4] Georgievskii D. V., “Ustoichivost dvumernykh i trekhmernykh vyazkoplasticheskikh techenii i obobschennaya teorema Skvaira”, MTT, 1993, no. 2, 117–123 | MR

[5] Georgievskii D. V., “Applicability of the Squire transformation in linearized problems on shear stability”, Russian J. Math. Phys., 16:4 (2009), 478–483 | DOI | MR | Zbl

[6] Georgievskii D. V., “Novye otsenki ustoichivosti odnomernykh ploskoparallelnykh techenii vyazkoi neszhimaemoi zhidkosti”, PMM, 74:4 (2010), 633–644 | Zbl

[7] Georgievskii D. V., Müller W. H., Abali B. E., “Generalizations of the Orr–Sommerfeld problem for the case in which the unperturbed motion is nonsteady”, Russian J. Math. Phys., 21:2 (2014), 189–196 | DOI | MR

[8] Orszag S. A., “Accurate solution of the Orr–Sommerfeld stability equation”, J. Fluid Mech., 50:4 (1971), 689–703 | DOI | Zbl

[9] Dubrovskii V. V., Kadchenko S. I., Kravchenko V. F., Sadovnichii V. A., “Novyi metod priblizhennogo vychisleniya pervykh sobstvennykh chisel spektralnoi zadachi Orra–Zommerfelda”, Dokl. RAN, 378:4 (2001), 443–446 | MR | Zbl

[10] Tumanov S. N., Shkalikov A. A., “O lokalizatsii spektra zadachi Orra–Zommerfelda dlya bolshikh chisel Reinoldsa”, Matem. zametki, 72:4 (2002), 561–569 | DOI | MR | Zbl

[11] Georgievskii D. V., “Variatsionnye otsenki i metod integralnykh sootnoshenii v zadachakh ustoichivosti”, Geometriya i mekhanika, SMFN, 23, ed. R. V. Gamkrelidze, RUDN, M., 2007, 96–146

[12] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Mir, M., 1971, 576 pp. | MR