Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2014_10_3_a7, author = {Dmitrii V. Georgievskii}, title = {Evolution of three-dimensional picture of disturbances imposed on~a~rotational-axial flow in a cylindrical clearance}, journal = {Russian journal of nonlinear dynamics}, pages = {345--354}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a7/} }
TY - JOUR AU - Dmitrii V. Georgievskii TI - Evolution of three-dimensional picture of disturbances imposed on~a~rotational-axial flow in a cylindrical clearance JO - Russian journal of nonlinear dynamics PY - 2014 SP - 345 EP - 354 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a7/ LA - ru ID - ND_2014_10_3_a7 ER -
%0 Journal Article %A Dmitrii V. Georgievskii %T Evolution of three-dimensional picture of disturbances imposed on~a~rotational-axial flow in a cylindrical clearance %J Russian journal of nonlinear dynamics %D 2014 %P 345-354 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a7/ %G ru %F ND_2014_10_3_a7
Dmitrii V. Georgievskii. Evolution of three-dimensional picture of disturbances imposed on~a~rotational-axial flow in a cylindrical clearance. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 345-354. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a7/
[1] Drazin F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005, 288 pp.
[2] Betchov R., Kriminale V., Voprosy gidrodinamicheskoi ustoichivosti, Mir, M., 1971, 354 pp. | Zbl
[3] Kozyrev O. R., Stepanyants Yu. A., “Metod integralnykh sootnoshenii v lineinoi teorii gidrodinamicheskoi ustoichivosti”, Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza, 25, VINITI, M., 1991, 3–89 | MR
[4] Georgievskii D. V., “Ustoichivost dvumernykh i trekhmernykh vyazkoplasticheskikh techenii i obobschennaya teorema Skvaira”, MTT, 1993, no. 2, 117–123 | MR
[5] Georgievskii D. V., “Applicability of the Squire transformation in linearized problems on shear stability”, Russian J. Math. Phys., 16:4 (2009), 478–483 | DOI | MR | Zbl
[6] Georgievskii D. V., “Novye otsenki ustoichivosti odnomernykh ploskoparallelnykh techenii vyazkoi neszhimaemoi zhidkosti”, PMM, 74:4 (2010), 633–644 | Zbl
[7] Georgievskii D. V., Müller W. H., Abali B. E., “Generalizations of the Orr–Sommerfeld problem for the case in which the unperturbed motion is nonsteady”, Russian J. Math. Phys., 21:2 (2014), 189–196 | DOI | MR
[8] Orszag S. A., “Accurate solution of the Orr–Sommerfeld stability equation”, J. Fluid Mech., 50:4 (1971), 689–703 | DOI | Zbl
[9] Dubrovskii V. V., Kadchenko S. I., Kravchenko V. F., Sadovnichii V. A., “Novyi metod priblizhennogo vychisleniya pervykh sobstvennykh chisel spektralnoi zadachi Orra–Zommerfelda”, Dokl. RAN, 378:4 (2001), 443–446 | MR | Zbl
[10] Tumanov S. N., Shkalikov A. A., “O lokalizatsii spektra zadachi Orra–Zommerfelda dlya bolshikh chisel Reinoldsa”, Matem. zametki, 72:4 (2002), 561–569 | DOI | MR | Zbl
[11] Georgievskii D. V., “Variatsionnye otsenki i metod integralnykh sootnoshenii v zadachakh ustoichivosti”, Geometriya i mekhanika, SMFN, 23, ed. R. V. Gamkrelidze, RUDN, M., 2007, 96–146
[12] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Mir, M., 1971, 576 pp. | MR