Amplitude-dependent internal friction and harmonics generation in solids with histeretic nonlinearity
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 297-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theoretical and numerical study of nonlinear wave processes in media with hysteretic nonlinearity are carried out. The phenomena of amplitude-dependent damping as well as change of the propagation velocity of harmonic wave and its second and third harmonic generation are considered. It was shown that the hysteretic media possess nonlinear dispersion that become apparent in the difference between the phase velocities of strong harmonic pump wave and its weak high harmonics. The dispersion leads to both spatial beatings and non-monotonically rate of growth of an amplitude of high harmonic at the increase in amplitude of basic frequency wave.
Keywords: hysteresis, amplitude-dependent internal friction, harmonics generation, nonlinear dispersion.
@article{ND_2014_10_3_a3,
     author = {Veniamin E. Nazarov and Sergey B. Kiyashko},
     title = {Amplitude-dependent internal friction and harmonics generation in solids with histeretic nonlinearity},
     journal = {Russian journal of nonlinear dynamics},
     pages = {297--307},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a3/}
}
TY  - JOUR
AU  - Veniamin E. Nazarov
AU  - Sergey B. Kiyashko
TI  - Amplitude-dependent internal friction and harmonics generation in solids with histeretic nonlinearity
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 297
EP  - 307
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a3/
LA  - ru
ID  - ND_2014_10_3_a3
ER  - 
%0 Journal Article
%A Veniamin E. Nazarov
%A Sergey B. Kiyashko
%T Amplitude-dependent internal friction and harmonics generation in solids with histeretic nonlinearity
%J Russian journal of nonlinear dynamics
%D 2014
%P 297-307
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a3/
%G ru
%F ND_2014_10_3_a3
Veniamin E. Nazarov; Sergey B. Kiyashko. Amplitude-dependent internal friction and harmonics generation in solids with histeretic nonlinearity. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 297-307. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a3/

[1] Ryskin N. M., Trubetskov D. I., Nelineinye volny, Nauka. Fizmatlit, M., 2000, 272 pp.

[2] Read T. A., “The internal friction on single metal crystals”, Phys. Rev., 58 (1940), 371–380 | DOI

[3] Granato A., Lücke K., “Theory of mechanical damping due to dislosations”, J. Appl. Phys., 27:5 (1956), 583–593 | DOI | Zbl

[4] L. G. Merkulov (red.), Ultrazvukovye metody issledovaniya dislokatsii, Sb. st., per. s angl. i nem., IIL, M., 1963, 376 pp.

[5] Niblett D., Uilks Dzh., “Vnutrennee trenie v metallakh, svyazannoe s dislokatsiyami”, UFN, 80:1 (1963), 125–187

[6] U. Mezon (red.), Fizicheskaya akustika, Ch. A, v. 4, Primeneniya fizicheskoi akustiki v kvantovoi fizike i fizike tverdogo tela, Mir, M., 1969, 436 pp.

[7] U. Mezon (red.), Fizicheskaya akustika, Ch. A, v. 3, Vliyanie defektov na svoistva tverdykh tel, Mir, M., 1969, 578 pp.

[8] Asano S., “Theory of nonlinear damping due to dislocation hysteresis”, J. Phys. Soc. Jpn., 29:4 (1970), 952–963 | DOI

[9] Lebedev A. B., “Vnutrennee trenie v protsesse kvazistaticheskogo deformirovaniya kristallov”, FTT, 35:9 (1993), 2304–2340

[10] Lebedev A. B., “Amplitudno-zavisimyi defekt modulya uprugosti v osnovnykh modelyakh dislokatsionnogo gisterezisa”, FTT, 41:7 (1999), 1214–1221

[11] Koehler J. S., Imperfections in nearly perfect crystals, Wiley, New York, 1952, 197–216

[12] Novick A. S., “Variation of amplitude-dependent internal friction in single crystals of copper with frequency and temperature”, Phys. Rev., 80:2 (1950), 249–257 | DOI

[13] Takahachi S., “Internal friction and critical stress of copper alloys”, J. Phys. Soc. Jpn., 11:12 (1956), 1253–1261 | DOI

[14] Beshers D. N., “Internal friction of copper and alloys”, J. Appl. Phys., 30:2 (1959), 252–258 | DOI

[15] Swartz J. C., Weertman J., “Modification of the Koehler–Granato–Lücke dislocation damping theory”, J. Appl. Phys., 32:10 (1961), 1860–1865 | DOI

[16] Gelli D., “A qualitative model for amplitude dependent dislocation damping”, J. Appl. Phys., 33:4 (1962), 1547–1550 | DOI

[17] Nazarov V. E., “Vliyanie struktury medi na ee akusticheskuyu nelineinost”, Fizika metallov i metallovedenie, 71:3 (1991), 172–178

[18] Nazarov V. E., “Ob amplitudnoi zavisimosti vnutrennego treniya tsinka”, Akust. zhurn., 46:2 (2000), 228–233 | MR

[19] Nazarov V. E., Kolpakov A. B., “Experimental investigations of nonlinear acoustic phenomena in polycrystalline zinc”, J. Acoust. Soc. Am., 107:4 (2000), 1915–1921 | DOI

[20] Nazarov V. E., “Amplitudno-zavisimoe vnutrennee trenie svintsa”, Fizika metallov i metallovedenie, 88:4 (1999), 82–90

[21] Nazarov V. E., Sutin A. M., “Generatsiya garmonik v tverdykh nelineinykh sredakh”, Akust. zhurn., 35:4 (1989), 711–716

[22] Nazarov V. E., Ostrovsky L. A., Soustova I. A., Sutin A. M., “Nonlinear acoustics of micro-inhomogeneous media”, Phys. Earth and Planet. Inter., 50:1 (1988), 65–73 | DOI | MR

[23] Nazarov V. E., Radostin A. V., Ostrovskii L. A., Soustova I. A., “Uprugie volny v sredakh s gisterezisnoi nelineinostyu, 1”, Akust. zhurn., 49:3 (2003), 405–415

[24] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, V 10 tt., v. 7, Teoriya uprugosti, Izd. 5-e, stereotipnoe, Fizmatlit, M., 2003, 264 pp.