Optimal selection of parameters of the forecasting models used for the nonlinear Granger causality method in application to the signals with a~main time scales
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 279-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

The detection of coupling presence and direction between various systems using their time series is a common task in many areas of knowledge. One of the approaches used to solve it is nonlinear Granger causality method. It is based on the construction of forecasting models, so its efficiency defends on selection of model parameters. Two parameters are important for modeling signals with a main time scales: lag that is used for state vector reconstruction and prediction length. In this paper, we propose two criteria for evaluating performance of the method of nonlinear Granger causality. These criteria allow to select lag and prediction length, that provide the best sensitivity and specificity. Sensitivity determines the weakest coupling method can detect, and specificity refers to the ability to avoid false positive results. As a result of the criteria application to several etalon unidirectionally coupled systems, practical recommendations for the selection of the model parameters (lag and prediction length) were formulated.
Keywords: search for coupling, Granger causality, modeling from time series.
@article{ND_2014_10_3_a2,
     author = {Maxim V. Kornilov and Ilya V. Sysoev and Boris P. Bezrychko},
     title = {Optimal selection of parameters of the forecasting models used for the nonlinear {Granger} causality method in application to the signals with a~main time scales},
     journal = {Russian journal of nonlinear dynamics},
     pages = {279--295},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a2/}
}
TY  - JOUR
AU  - Maxim V. Kornilov
AU  - Ilya V. Sysoev
AU  - Boris P. Bezrychko
TI  - Optimal selection of parameters of the forecasting models used for the nonlinear Granger causality method in application to the signals with a~main time scales
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 279
EP  - 295
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a2/
LA  - ru
ID  - ND_2014_10_3_a2
ER  - 
%0 Journal Article
%A Maxim V. Kornilov
%A Ilya V. Sysoev
%A Boris P. Bezrychko
%T Optimal selection of parameters of the forecasting models used for the nonlinear Granger causality method in application to the signals with a~main time scales
%J Russian journal of nonlinear dynamics
%D 2014
%P 279-295
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a2/
%G ru
%F ND_2014_10_3_a2
Maxim V. Kornilov; Ilya V. Sysoev; Boris P. Bezrychko. Optimal selection of parameters of the forecasting models used for the nonlinear Granger causality method in application to the signals with a~main time scales. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 279-295. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a2/

[1] Granger C. W. J., “Investigating causal relations by econometric models and cross-spectral methods”, Econometrica, 37:3 (1969), 424–438 | DOI | MR

[2] Baccalá L. A., Sameshima K., Ballester G., Do Valle A. C., Timo-Laria C., “Studying the interaction between brain structures via directed coherence and Granger causality”, Appl. Signal Process., 5:1 (1998), 40–48 | DOI

[3] Tass P., Smirnov D., Karavaev A., Barnikol U., Barnikol T., Adamchic I., Hauptmann C., Pawelcyzk N., Maarouf M., Sturm V., Freund H.-J., Bezruchko B., “The causal relationship between subcortical local field potential oscillations and Parkinsonian resting tremor”, J. Neural Eng., 7:1 (2010), 016009 | DOI

[4] Gourévitch B., Le Bouquin-Jeannès R., Faucon G., “Linear and nonlinear causality between signals: Methods, examples and neurophysiological applications”, Biol. Cybern., 95:4 (2006), 349–369 | DOI | MR | Zbl

[5] Mokhov I. I., Smirnov D. A., “Empiricheskie otsenki vozdeistviya estestvennykh i antropogennykh faktorov na globalnuyu pripoverkhnostnuyu temperaturu”, Dokl. RAN, 426:5 (2009), 679–684

[6] Yakhno Yu. V., Molkov Ya. I., Mukhin D. N., Loskutov E. M., Feigin A. M., “Rekonstruktsiya operatora evolyutsii kak sposob analiza elektricheskoi aktivnosti mozga pri epilepsii”, Izv. vuzov. PND, 19:6 (2011), 156–172 | Zbl

[7] Packard N. H., Crutchfield J. P., Farmer J. D., Shaw R. S., “Geometry from a time series”, Phys. Rev. Lett., 45:9 (1980), 712–716 | DOI

[8] Kougioumtzis D., “State space reconstruction parameters in the analysis of chaotic time series: The role of the time window length”, Phys. D, 95:1 (1996), 13–28 | DOI

[9] Smirnov D., Bezruchko B., “Spurious causalities due to low temporal resolution: Towards detection of bidirectional coupling from time series”, Europhys. Lett., 100:1 (2012), 10005, 6 pp. | DOI

[10] Sysoeva M. V., Dikanev T. V., Sysoev I. V., “Vybor vremennykh masshtabov pri postroenii empiricheskoi modeli”, Izv. vuzov. PND, 20:2 (2012), 54–62 | Zbl

[11] Chen Y., Rangarajan G., Feng J., Ding M., “Analyzing multiple nonlinear time series with extended Granger causality”, Phys. Lett. A, 324:1 (2004), 26–35 | DOI | MR | Zbl

[12] Marinazzo D., Pellicoro M., Stramaglia S., “Nonlinear parametric model for Granger causality of time series”, Phys. Rev. E, 73:6 (2006), 066216, 6 pp. | DOI

[13] Sitnikova E., Dikanev T., Smirnov D., Bezruchko B., van Luijtelaar G., “Granger causality: Cortico-thalamic interdependencies during absence seizures in WAG/Rij rats”, J. Neurosci. Meth., 170:2 (2008), 245–254 | DOI

[14] Sysoev I. V., Karavaev A. S., Nakonechnyi P. I., “Rol nelineinosti modeli v diagnostike svyazei pri patologicheskom tremore metodom greindzherovskoi prichinnosti”, Izv. vuzov. PND, 18:4 (2010), 81–86

[15] Kornilov M. V., Sysoev I. V., “Vliyanie vybora struktury modeli na rabotosposobnost metoda nelineinoi prichinnosti po Greindzheru”, Izv. vuzov. PND, 21:2 (2013), 74–88 | Zbl

[16] Allefeld C., Kurths J., “Testing for phase synchronization”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:2 (2004), 405–416 | DOI | MR | Zbl

[17] Pikovskii A., Rozenblyum M., Kurts Yu., SinkhronizatsiyaZh Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 494 pp.

[18] Schwarz G., “Estimating the dimension of a model”, Ann. Statist., 6:2 (1978), 461–464 | DOI | MR | Zbl

[19] Rössler O. E., “An equation for continuous chaos”, Phys. Lett. A, 57:5 (1976), 397–398 | DOI

[20] Kiyashko S. V., Pikovskii A. S., Rabinovich M. I., “Avtogenerator radiodiapazona so stokhasticheskim povedeniem”, Radiotekhnika i elektronika, 25:2 (1980), 336–343

[21] Anischenko V. S., Astakhov V. V., “Eksperimentalnoe issledovanie mekhanizma vozniknoveniya i struktury strannogo attraktora v generatore s inertsionnoi nelineinostyu”, Radiotekhnika i elektronika, 28:6 (1983), 1109–1125

[22] Dmitriev A. S., Kislov V. Ya., “Stokhasticheskie kolebaniya v avtogeneratore s inertsionnym zapazdyvaniem pervogo poryadka”, Radiotekhnika i elektronika, 29:12 (1984), 2389–2398