Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2014_10_3_a2, author = {Maxim V. Kornilov and Ilya V. Sysoev and Boris P. Bezrychko}, title = {Optimal selection of parameters of the forecasting models used for the nonlinear {Granger} causality method in application to the signals with a~main time scales}, journal = {Russian journal of nonlinear dynamics}, pages = {279--295}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a2/} }
TY - JOUR AU - Maxim V. Kornilov AU - Ilya V. Sysoev AU - Boris P. Bezrychko TI - Optimal selection of parameters of the forecasting models used for the nonlinear Granger causality method in application to the signals with a~main time scales JO - Russian journal of nonlinear dynamics PY - 2014 SP - 279 EP - 295 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a2/ LA - ru ID - ND_2014_10_3_a2 ER -
%0 Journal Article %A Maxim V. Kornilov %A Ilya V. Sysoev %A Boris P. Bezrychko %T Optimal selection of parameters of the forecasting models used for the nonlinear Granger causality method in application to the signals with a~main time scales %J Russian journal of nonlinear dynamics %D 2014 %P 279-295 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a2/ %G ru %F ND_2014_10_3_a2
Maxim V. Kornilov; Ilya V. Sysoev; Boris P. Bezrychko. Optimal selection of parameters of the forecasting models used for the nonlinear Granger causality method in application to the signals with a~main time scales. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 279-295. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a2/
[1] Granger C. W. J., “Investigating causal relations by econometric models and cross-spectral methods”, Econometrica, 37:3 (1969), 424–438 | DOI | MR
[2] Baccalá L. A., Sameshima K., Ballester G., Do Valle A. C., Timo-Laria C., “Studying the interaction between brain structures via directed coherence and Granger causality”, Appl. Signal Process., 5:1 (1998), 40–48 | DOI
[3] Tass P., Smirnov D., Karavaev A., Barnikol U., Barnikol T., Adamchic I., Hauptmann C., Pawelcyzk N., Maarouf M., Sturm V., Freund H.-J., Bezruchko B., “The causal relationship between subcortical local field potential oscillations and Parkinsonian resting tremor”, J. Neural Eng., 7:1 (2010), 016009 | DOI
[4] Gourévitch B., Le Bouquin-Jeannès R., Faucon G., “Linear and nonlinear causality between signals: Methods, examples and neurophysiological applications”, Biol. Cybern., 95:4 (2006), 349–369 | DOI | MR | Zbl
[5] Mokhov I. I., Smirnov D. A., “Empiricheskie otsenki vozdeistviya estestvennykh i antropogennykh faktorov na globalnuyu pripoverkhnostnuyu temperaturu”, Dokl. RAN, 426:5 (2009), 679–684
[6] Yakhno Yu. V., Molkov Ya. I., Mukhin D. N., Loskutov E. M., Feigin A. M., “Rekonstruktsiya operatora evolyutsii kak sposob analiza elektricheskoi aktivnosti mozga pri epilepsii”, Izv. vuzov. PND, 19:6 (2011), 156–172 | Zbl
[7] Packard N. H., Crutchfield J. P., Farmer J. D., Shaw R. S., “Geometry from a time series”, Phys. Rev. Lett., 45:9 (1980), 712–716 | DOI
[8] Kougioumtzis D., “State space reconstruction parameters in the analysis of chaotic time series: The role of the time window length”, Phys. D, 95:1 (1996), 13–28 | DOI
[9] Smirnov D., Bezruchko B., “Spurious causalities due to low temporal resolution: Towards detection of bidirectional coupling from time series”, Europhys. Lett., 100:1 (2012), 10005, 6 pp. | DOI
[10] Sysoeva M. V., Dikanev T. V., Sysoev I. V., “Vybor vremennykh masshtabov pri postroenii empiricheskoi modeli”, Izv. vuzov. PND, 20:2 (2012), 54–62 | Zbl
[11] Chen Y., Rangarajan G., Feng J., Ding M., “Analyzing multiple nonlinear time series with extended Granger causality”, Phys. Lett. A, 324:1 (2004), 26–35 | DOI | MR | Zbl
[12] Marinazzo D., Pellicoro M., Stramaglia S., “Nonlinear parametric model for Granger causality of time series”, Phys. Rev. E, 73:6 (2006), 066216, 6 pp. | DOI
[13] Sitnikova E., Dikanev T., Smirnov D., Bezruchko B., van Luijtelaar G., “Granger causality: Cortico-thalamic interdependencies during absence seizures in WAG/Rij rats”, J. Neurosci. Meth., 170:2 (2008), 245–254 | DOI
[14] Sysoev I. V., Karavaev A. S., Nakonechnyi P. I., “Rol nelineinosti modeli v diagnostike svyazei pri patologicheskom tremore metodom greindzherovskoi prichinnosti”, Izv. vuzov. PND, 18:4 (2010), 81–86
[15] Kornilov M. V., Sysoev I. V., “Vliyanie vybora struktury modeli na rabotosposobnost metoda nelineinoi prichinnosti po Greindzheru”, Izv. vuzov. PND, 21:2 (2013), 74–88 | Zbl
[16] Allefeld C., Kurths J., “Testing for phase synchronization”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:2 (2004), 405–416 | DOI | MR | Zbl
[17] Pikovskii A., Rozenblyum M., Kurts Yu., SinkhronizatsiyaZh Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 494 pp.
[18] Schwarz G., “Estimating the dimension of a model”, Ann. Statist., 6:2 (1978), 461–464 | DOI | MR | Zbl
[19] Rössler O. E., “An equation for continuous chaos”, Phys. Lett. A, 57:5 (1976), 397–398 | DOI
[20] Kiyashko S. V., Pikovskii A. S., Rabinovich M. I., “Avtogenerator radiodiapazona so stokhasticheskim povedeniem”, Radiotekhnika i elektronika, 25:2 (1980), 336–343
[21] Anischenko V. S., Astakhov V. V., “Eksperimentalnoe issledovanie mekhanizma vozniknoveniya i struktury strannogo attraktora v generatore s inertsionnoi nelineinostyu”, Radiotekhnika i elektronika, 28:6 (1983), 1109–1125
[22] Dmitriev A. S., Kislov V. Ya., “Stokhasticheskie kolebaniya v avtogeneratore s inertsionnym zapazdyvaniem pervogo poryadka”, Radiotekhnika i elektronika, 29:12 (1984), 2389–2398