Hyperbolic chaos in systems with parametrically excited patterns of~standing waves
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 265-277
Voir la notice de l'article provenant de la source Math-Net.Ru
We outline a possibility of implementation of Smale–Williams type attractors with different stretching factors for the angular coordinate, namely, $n = 3,5,7,9,11$, for the maps describing the evolution of parametrically excited standing wave patterns on a nonlinear string over a period of modulation of pump accompanying by alternate excitation of modes with the wavelength ratios of $1:n$.
Keywords:
parametric oscillations, string, attractor, Lyapunov exponent.
Mots-clés : chaos
Mots-clés : chaos
@article{ND_2014_10_3_a1,
author = {Vyacheslav P. Kruglov and Alexey S. Kuznetsov and Sergey P. Kuznetsov},
title = {Hyperbolic chaos in systems with parametrically excited patterns of~standing waves},
journal = {Russian journal of nonlinear dynamics},
pages = {265--277},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/}
}
TY - JOUR AU - Vyacheslav P. Kruglov AU - Alexey S. Kuznetsov AU - Sergey P. Kuznetsov TI - Hyperbolic chaos in systems with parametrically excited patterns of~standing waves JO - Russian journal of nonlinear dynamics PY - 2014 SP - 265 EP - 277 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/ LA - ru ID - ND_2014_10_3_a1 ER -
%0 Journal Article %A Vyacheslav P. Kruglov %A Alexey S. Kuznetsov %A Sergey P. Kuznetsov %T Hyperbolic chaos in systems with parametrically excited patterns of~standing waves %J Russian journal of nonlinear dynamics %D 2014 %P 265-277 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/ %G ru %F ND_2014_10_3_a1
Vyacheslav P. Kruglov; Alexey S. Kuznetsov; Sergey P. Kuznetsov. Hyperbolic chaos in systems with parametrically excited patterns of~standing waves. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 265-277. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/