Hyperbolic chaos in systems with parametrically excited patterns of~standing waves
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 265-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

We outline a possibility of implementation of Smale–Williams type attractors with different stretching factors for the angular coordinate, namely, $n = 3,5,7,9,11$, for the maps describing the evolution of parametrically excited standing wave patterns on a nonlinear string over a period of modulation of pump accompanying by alternate excitation of modes with the wavelength ratios of $1:n$.
Keywords: parametric oscillations, string, attractor, Lyapunov exponent.
Mots-clés : chaos
@article{ND_2014_10_3_a1,
     author = {Vyacheslav P. Kruglov and Alexey S. Kuznetsov and Sergey P. Kuznetsov},
     title = {Hyperbolic chaos in systems with parametrically excited patterns of~standing waves},
     journal = {Russian journal of nonlinear dynamics},
     pages = {265--277},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/}
}
TY  - JOUR
AU  - Vyacheslav P. Kruglov
AU  - Alexey S. Kuznetsov
AU  - Sergey P. Kuznetsov
TI  - Hyperbolic chaos in systems with parametrically excited patterns of~standing waves
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 265
EP  - 277
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/
LA  - ru
ID  - ND_2014_10_3_a1
ER  - 
%0 Journal Article
%A Vyacheslav P. Kruglov
%A Alexey S. Kuznetsov
%A Sergey P. Kuznetsov
%T Hyperbolic chaos in systems with parametrically excited patterns of~standing waves
%J Russian journal of nonlinear dynamics
%D 2014
%P 265-277
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/
%G ru
%F ND_2014_10_3_a1
Vyacheslav P. Kruglov; Alexey S. Kuznetsov; Sergey P. Kuznetsov. Hyperbolic chaos in systems with parametrically excited patterns of~standing waves. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 265-277. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/

[1] Kuptsov P. V., Kuznetsov S. P., Pikovsky A., “Hyperbolic chaos of Turing patterns”, Phys. Rev. Lett., 108:19 (2012), 194101, 4 pp. | DOI

[2] Kruglov V. P., Kuznetsov S. P., Pikovsky A., “Attractor of Smale–Williams type in an autonomous distributed system”, Regul. Chaotic Dyn., 19:4 (2014), 483–494 | DOI | MR

[3] Isaeva O. B., Kuznetsov A. S., Kuznetsov S. P., “Giperbolicheskii khaos pri parametricheskikh kolebaniyakh struny”, Nelineinaya dinamika, 9:1 (2013), 3–10

[4] Isaeva O. B., Kuznetsov A. S., Kuznetsov S. P., “Hyperbolic chaos of standing wave patterns generated parametrically by a modulated pump source”, Phys. Rev. E, 87:4 (2013), 040901(R), 4 pp. | DOI

[5] Mandelshtam L. I., Lektsii po kolebaniyam, AN SSSR, M., 1955, 511 pp.

[6] Rowland D. R., “Parametric resonance and nonlinear string vibrations”, Amer. J. Phys., 72 (2004), 758–766 | DOI

[7] Kalitkin H. H., Chislennye metody, Nauka, M., 1978, 512 pp.

[8] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them”, Meccanica, 15 (1980), 9–30 | DOI

[9] Shuster G., Determinirovannyi khaos, Mir, M., 1988, 250 pp.

[10] Kuznetsov S. P., Dinamicheskii khaos, 2-e izd., Fizmatlit, M., 2006, 356 pp.

[11] Kuznetsov S. P., “Some mechanical systems manifesting robust chaos”, Nonlinear Dynamics Mobile Robotics, 1:1 (2013), 3–22

[12] Lai Y.-Ch., Grebogi C., Yorke J. A., Kan I., How often are chaotic saddles nonhyperbolic?, Nonlinearity, 6:5 (1993), 779–797 | DOI | MR | Zbl

[13] Anishchenko V. S., Kopeikin A. S., Kurths J., Vadivasova T. E., Strelkova G. I., “Studying hyperbolicity in chaotic systems”, Phys. Lett. A, 270:6 (2000), 301–307 | DOI | MR | Zbl

[14] Kuptsov P. V., “Fast numerical test of hyperbolic chaos”, Phys. Rev. E, 85:1 (2012), 015203(R), 4 pp. | DOI | MR

[15] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Nauka, M., 1981, 916 pp.

[16] Dmitriev A. S., Panas A. I., Dinamicheskii khaos: Novye nositeli informatsii dlya sistem svyazi, Fizmatlit, M., 2002, 252 pp.

[17] Lukin K. A., “Noise radar technology”, Telecomm. Radio Eng., 55:12 (2001), 8–16 | DOI

[18] Drutarovský M., Galajda P., “A robust chaos-based true random number generator embedded in reconfigurable switched-capacitor hardware”, Radioengineering, 16:3 (2007), 120–127

[19] Panovko Ya. G., Vvedenie v teoriyu mekhanicheskikh kolebanii, Nauka, M., 1971, 256 pp.

[20] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 384 pp.

[21] Rudenko O. V., Soluyan S. I., Teoreticheskie osnovy nelineinoi akustiki, Nauka, M., 1975, 287 pp.

[22] Ostrovskii L. A., Papilova I. A., Sutin A. M., “Parametricheskii generator ultrazvuka”, Pisma v ZhETF, 15:8 (1972), 456–458

[23] Lyuisell U., Svyazannye i parametricheskie kolebaniya v elektronike, IIL, M., 1963, 352 pp.

[24] Kaplan A. E., Kravtsov Yu. A., Rylov V. A., Parametricheskie generatory i deliteli chastoty, Sovetskoe radio, M., 1966, 335 pp.

[25] Akhmanov S. A., Khokhlov R. V., “Parametricheskie usiliteli i generatory sveta”, UFN, 88:3 (1966), 439–460