Hyperbolic chaos in systems with parametrically excited patterns of~standing waves
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 265-277

Voir la notice de l'article provenant de la source Math-Net.Ru

We outline a possibility of implementation of Smale–Williams type attractors with different stretching factors for the angular coordinate, namely, $n = 3,5,7,9,11$, for the maps describing the evolution of parametrically excited standing wave patterns on a nonlinear string over a period of modulation of pump accompanying by alternate excitation of modes with the wavelength ratios of $1:n$.
Keywords: parametric oscillations, string, attractor, Lyapunov exponent.
Mots-clés : chaos
@article{ND_2014_10_3_a1,
     author = {Vyacheslav P. Kruglov and Alexey S. Kuznetsov and Sergey P. Kuznetsov},
     title = {Hyperbolic chaos in systems with parametrically excited patterns of~standing waves},
     journal = {Russian journal of nonlinear dynamics},
     pages = {265--277},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/}
}
TY  - JOUR
AU  - Vyacheslav P. Kruglov
AU  - Alexey S. Kuznetsov
AU  - Sergey P. Kuznetsov
TI  - Hyperbolic chaos in systems with parametrically excited patterns of~standing waves
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 265
EP  - 277
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/
LA  - ru
ID  - ND_2014_10_3_a1
ER  - 
%0 Journal Article
%A Vyacheslav P. Kruglov
%A Alexey S. Kuznetsov
%A Sergey P. Kuznetsov
%T Hyperbolic chaos in systems with parametrically excited patterns of~standing waves
%J Russian journal of nonlinear dynamics
%D 2014
%P 265-277
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/
%G ru
%F ND_2014_10_3_a1
Vyacheslav P. Kruglov; Alexey S. Kuznetsov; Sergey P. Kuznetsov. Hyperbolic chaos in systems with parametrically excited patterns of~standing waves. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 265-277. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a1/