Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2014_10_3_a0, author = {Irina P. Kikot and Leonid I. Manevich}, title = {Weakly coupled oscillators in the presence of elactic support in the conditions of acoustic vacuum}, journal = {Russian journal of nonlinear dynamics}, pages = {245--263}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a0/} }
TY - JOUR AU - Irina P. Kikot AU - Leonid I. Manevich TI - Weakly coupled oscillators in the presence of elactic support in the conditions of acoustic vacuum JO - Russian journal of nonlinear dynamics PY - 2014 SP - 245 EP - 263 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a0/ LA - ru ID - ND_2014_10_3_a0 ER -
%0 Journal Article %A Irina P. Kikot %A Leonid I. Manevich %T Weakly coupled oscillators in the presence of elactic support in the conditions of acoustic vacuum %J Russian journal of nonlinear dynamics %D 2014 %P 245-263 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a0/ %G ru %F ND_2014_10_3_a0
Irina P. Kikot; Leonid I. Manevich. Weakly coupled oscillators in the presence of elactic support in the conditions of acoustic vacuum. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 245-263. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a0/
[1] Manevitch L., “New approach to beating phenomenon in coupled nonlinear oscillatory chains”, Proc. of the 8th Conf. «Dynamical Systems: Theory and Applications» (Poland, 2005), v. 1, eds. J. Awrejcewicz, D. Sendkowski, J. Mrozowski, Politechnika Łódzka, Łódź, 2005, 119–136
[2] Manevitch L., “New approach to beating phenomenon in coupled nonlinear oscillatory chains”, Arch. Appl. Mech., 77:5 (2007), 301–312 | DOI | Zbl
[3] Manevitch L. I., Kovaleva A. S., Manevitch E. L., “Limiting phase trajectories and resonance energy transfer in a system of two coupled oscillators”, Math. Probl. Eng., 2010, 760479, 24 pp. | MR | Zbl
[4] Manevitch L. I., Kovaleva A. S., Shepelev D. S., “Non-smooth approximations of the limiting phase trajectories for the Duffing oscillator near $1:1$ resonance”, Phys. D, 240:1 (2011), 1–12 | DOI | MR | Zbl
[5] Manevitch L. I., Gendelman O. V., Tractable models of solid mechanics: Formulation, analysis and interpretation, Foundations of Engineering Mechanics, Springer, Heidelberg, 2011, 302 pp. | DOI | MR | Zbl
[6] Vakakis A. F., Manevitch L. I., Gendelman O., Bergman L., “Dynamics of linear discrete systems connected to local, essentially non-linear attachments”, J. Sound Vibration, 264:3 (2003), 559–577 | DOI | MR
[7] Manevitch L. I., Sigalov G., Romeo F., Bergman L. A., Vakakis A., “Dynamics of a linear oscillator coupled to a bistable light attachment: Analytical study”, Trans. ASME J. Appl. Mech., 81:4 (2014), 041011, 9 pp. | DOI
[8] Manevitch L. I., Smirnov V. V., “Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains”, Phys. Rev. E (3), 82:3 (2010), 036602, 9 pp. | DOI | MR
[9] Manevitch L. I., Vakakis A., “Nonlinear oscillatory acoustic vacuum”, SIAM J. Appl. Math., 2014 | MR
[10] Pilipchuk V. N., Nonlinear dynamics: Between linear and impact limits, Lect. Notes Appl. Comput. Mech., 52, Springer, Berlin, 2011, 360 pp. | MR
[11] Vakakis A. F., Gendelman O. V., Bergman L. A., McFarland D. M., Kerschen G., Lee Y. S., Nonlinear targeted energy transfer in mechanical and structural systems, Solid Mech. Appl., 156, Springer, Dordrecht, 2009, 1032 pp.