Figures of equilibrium of an inhomogeneous self-gravitating fluid
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 73-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the figures of equilibrium of a self-gravitating ideal fluid with density stratification and a steady-state velocity field. As in the classical setting, it is assumed that the figure or its layers uniformly rotate about an axis fixed in space. As is well known, when there is no rotation, only a ball can be a figure of equilibrium. It is shown that the ellipsoid of revolution (spheroid) with confocal stratification, in which each layer rotates with inherent constant angular velocity, is at equilibrium. Expressions are obtained for the gravitational potential, change in the angular velocity and pressure, and the conclusion is drawn that the angular velocity on the outer surface is the same as that of the Maclaurin spheroid. We note that the solution found generalizes a previously known solution for piecewise constant density distribution. For comparison, we also present a solution, due to Chaplygin, for a homothetic density stratification. We conclude by considering a homogeneous spheroid in the space of constant positive curvature. We show that in this case the spheroid cannot rotate as a rigid body, since the angular velocity distribution of fluid particles depends on the distance to the symmetry axis.
Keywords: self-gravitating fluid, homothetic stratification, space of constant curvature.
Mots-clés : confocal stratification
@article{ND_2014_10_1_a5,
     author = {Ivan A. Bizyaev and Alexey V. Borisov and Ivan S. Mamaev},
     title = {Figures of equilibrium of an inhomogeneous self-gravitating fluid},
     journal = {Russian journal of nonlinear dynamics},
     pages = {73--100},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_1_a5/}
}
TY  - JOUR
AU  - Ivan A. Bizyaev
AU  - Alexey V. Borisov
AU  - Ivan S. Mamaev
TI  - Figures of equilibrium of an inhomogeneous self-gravitating fluid
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 73
EP  - 100
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_1_a5/
LA  - ru
ID  - ND_2014_10_1_a5
ER  - 
%0 Journal Article
%A Ivan A. Bizyaev
%A Alexey V. Borisov
%A Ivan S. Mamaev
%T Figures of equilibrium of an inhomogeneous self-gravitating fluid
%J Russian journal of nonlinear dynamics
%D 2014
%P 73-100
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_1_a5/
%G ru
%F ND_2014_10_1_a5
Ivan A. Bizyaev; Alexey V. Borisov; Ivan S. Mamaev. Figures of equilibrium of an inhomogeneous self-gravitating fluid. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 73-100. http://geodesic.mathdoc.fr/item/ND_2014_10_1_a5/

[1] Appel P., Figury ravnovesiya vraschayuscheisya odnorodnoi zhidkosti, ONTI, M.–Leningrad, 1936, 376 pp.

[2] Borisov A. V., Mamaev I. S., Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 1999, 464 pp. | MR

[3] Borisov A. V., Mamaev I. S., Kilin A. A., “Zadacha dvukh tel na sfere: Privedenie, stokhastichnost, periodicheskie orbity”: A. V. Borisov, I. S. Mamaev, Klassicheskaya dinamika v neevklidovykh prostranstvakh, Sb. st., «IKI», M.–Izhevsk, 2004, 263–285

[4] Borisov A. V., Mamaev I. S., Kilin A. A., “Gamiltonova dinamika zhidkikh i gazovykh samogravitiruyuschikh ellipsoidov”, Nelineinaya dinamika, 4:4 (2008), 363–406 ; Borisov A. V., Mamaev I. S., Kilin A. A., “The Hamiltonian dynamics of self-gravitating liquid and gas ellipsoids”, Regul. Chaotic Dyn., 14:2 (2009), 179–217 | DOI | MR | Zbl

[5] Killing V., “Mekhanika v neevklidovykh prostranstvakh”: A. V. Borisov, I. S. Mamaev, Klassicheskaya dinamika v neevklidovykh prostranstvakh, Sb. st., «IKI», M.–Izhevsk, 2004, 23–73

[6] Klero A., Teoriya figury Zemli, osnovannaya na nachalakh gidrostatiki, AN SSSR, M., 1947, 358 pp. | MR

[7] Kozlov V. V., “Teoremy Nyutona i Aivori o prityazhenii v prostranstvakh postoyannoi krivizny”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 2000, no. 5, 43–47 ; А. В. Борисов, И. С. Мамаев, Классическая динамика в неевклидовых пространствах, Сб. ст., «ИКИ», М.–Ижевск, 2004, 341–348 | MR | Zbl

[8] Kozlov V. V., Kharin A. O., “Zadacha Keplera v prostranstvakh postoyannoi krivizny”: A. V. Borisov, I. S. Mamaev, Klassicheskaya dinamika v neevklidovykh prostranstvakh, Sb. st., «IKI», M.–Izhevsk, 2004, 159–167

[9] Kochin N. E., Kibel I. A., Roze N. V., Teoreticheskaya gidromekhanika, v. 1, Fizmatlit, M., 1963, 584 pp. | Zbl

[10] Littlton R. A., Ustoichivost vraschayuschikhsya mass zhidkosti, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 240 pp.

[11] Likhtenshtein L., Figury ravnovesiya vraschayuscheisya zhidkosti, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 252 pp.

[12] Lyapunov A. M., Sobranie sochinenii, v. 3, AN SSSR, M., 1959, 373 pp.

[13] Pitsetti P., Osnovy mekhanicheskoi teorii figury planet, GTTI, M.–L., 1933, 170 pp.

[14] Chandrasekkhar S., Ellipsoidalnye figury ravnovesiya, Mir, M., 1973, 289 pp.

[15] Chaplygin S. A., “Ustanovivsheesya vraschenie zhidkogo neodnorodnogo sferoida”, Sobr. soch., v. 2, Gidrodinamika. Aerodinamika, Gostekhizdat, M., 1948, 576–585

[16] Shrëdinger E., “Metod opredeleniya kvantovomekhanicheskikh sobstvennykh znachenii i sobstvennykh funktsii”: A. V. Borisov, I. S. Mamaev, Klassicheskaya dinamika v neevklidovykh prostranstvakh, Sb. st., «IKI», M.–Izhevsk, 2004, 113–125

[17] Albouy A., “There is a projective dynamics”, Eur. Math. Soc. Newsl., 2013, no. 89, 37–43 | MR | Zbl

[18] Betti E., “Sopra i moti che conservano la figura ellissoidale a una massa fluida eterogenea”, Ann. Mat. Pura Appl. Ser. 2, 10 (1881), 173–187; Бетти Э., “О движениях, сохраняющих эллипсоидальную форму неоднородной жидкой массы”: А. В. Борисов, И. С. Мамаев, Динамика жидких и газовых эллипсоидов, НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, М.–Ижевск, 2010, 134–149

[19] Borisov A. V., Mamaev I. S., “Relations between integrable systems in plane and curved spaces”, Celestial Mech. Dynam. Astronom., 99:4 (2007), 253–260 | DOI | MR | Zbl

[20] Borisov A. V., Mamaev I. S., Kilin A. A., “Two-body problem on a sphere: Reduction, stochasticity, periodic orbits”, Regul. Chaotic Dyn., 9:3 (2004), 265–279 | DOI | MR | Zbl

[21] Craik A. D. D., “James Ivory's last papers on the «Figure of the Earth» (with biographical additions)”, Notes and Records Roy. Soc. London, 56:2 (2002), 187–204 | DOI | MR | Zbl

[22] Dirichlet G. L., “Untersuchungen über ein Problem der Hydrodynamik: Aus dessen Nachlass hergestellt von Herrn R. Dedekind zu Zürich”, J. Reine Angew. Math., 58 (1861), 181–216 ; Дирихле Л., “Исследование одной задачи гидродинамики”: А. В. Борисов, И. С. Мамаев, Динамика жидких и газовых эллипсоидов, НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, М.–Ижевск, 2010, 19–58 | DOI | Zbl

[23] Dyson F. J., “Dynamics of a spinning gas cloud”, J. Math. Mech., 18:1 (1968), 91–101 | Zbl

[24] Esteban E. P., Vasquez S., “Rotating stratified heterogeneous oblate spheroid in Newtonian physics”, Celestial Mech. Dynam. Astronom., 81:4 (2001), 299–312 | DOI | MR | Zbl

[25] Fassò F., Lewis D., “Stability properties of the Riemann ellipsoids”, Arch. Ration. Mech. Anal., 158:4 (2001), 259–292 ; Фассо Ф., Льюис Д., “Свойства устойчивости эллипсоидов Римана”: А. В. Борисов, И. С. Мамаев, Динамика жидких и газовых эллипсоидов, НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, М.–Ижевск, 2010, 255–303 | DOI | MR | Zbl

[26] Ferrers N. M., “On the potentials, ellipsoids, ellipsoidal shells, elliptic laminae, and elliptic rings, of variable densities”, Quart. J. Pure Appl. Math., 14 (1875), 1–23

[27] Gaffet B., “Spinning gas clouds: Liouville integrability”, J. Phys. A, 34:11 (2001), 2097–2109 | DOI | MR | Zbl

[28] Hamy M., “Étude sur la figure des corps célestes”, Ann. de l'Observatoire de Paris. Mémories, 19 (1889), 1–54

[29] Jacobi C. G. J., “Über die Figur des Gleichgewichts”, Poggendorff Annalen der Physik und Chemie, 33 (1834), 229–238 ; Jacobi C. G. J., Gesammelte Werke, v. 2, Reimer, Berlin, 1882, 17–72 | DOI

[30] Kong D., Zhang K., Schubert G., “Shapes of two-layer models of rotating planets”, J. Geophys. Res., 115 (2010), E12003 | DOI

[31] Liouville J., “Sur la figure d'une masse fluide homogène, en équilibre et douée d'un mouvement de rotation”, J. de l'École Polytech., 14 (1834), 289–296

[32] MacLaurin C., A treatise of fluxions, In 2 vols., Ruddimans, Edinburgh, 1742, 574 pp.

[33] Meinel R., Ansorg M., Kleinwächter A., Neugebauer G., Petroff D., Relativistic figures of equilibrium, Cambridge Univ. Press, Cambridge, 2008, 228 pp. | MR | Zbl

[34] Montalvo D., Martínez F. J., Cisneros J., “On equilibrium figures for ideal fluids in the form of confocal spheroids rotating with common and different angular velocities”, Rev. Mexicana Astronom. Astrofís., 5:4 (1983), 293–300 | MR

[35] Rambaux N., van Hoolst T., Dehant V., Bois E., “Inertial core-mantle coupling and libration of Mercury”, Astron. Astrophys., 468:2 (2007), 711–179 | DOI

[36] Riemann B., “Ein Beitrag zu den Untersuchungen über die Bewegung eines flüssigen gleichartigen Ellipsoïdes”, Abh. der Königl. Ges. der Wissenschaften zu Göttingen, 9 (1860), 3–36; Риман Б., Сочинения, ГИТТЛ, М.–Л., 1948, 339–366; Риман Б., “О движении жидкого однородного эллипсоида”: А. В. Борисов, И. С. Мамаев, Динамика жидких и газовых эллипсоидов, НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, М.–Ижевск, 2010, 74–107

[37] Tedone O., “Il moto di un ellissoide fluido secondo l'ipotesi di Dirihlet”, Annali della Scuola Normale Superiore di Pisa, Ser. 1, 7 (1895), 1–100 ; Тедоне О., “Движение жидкого эллипсоида при выполнении гипотезы Дирихле”: А. В. Борисов, И. С. Мамаев, Динамика жидких и газовых эллипсоидов, НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, М.–Ижевск, 2010, 150–236 | MR

[38] Véronnet A., “Rotation de l'ellipsoide hétérogène et figure exacte de la Terre”, J. Math. Pures et Appl., Sér. 6, 8 (1912), 331–463

[39] Volterra V., “Sur la stratification d'une masse fluide en équilibre”, Acta Math., 27:1 (1903), 105–124 | DOI | MR | Zbl

[40] Williams D. R., “Earth fact sheet”, Proc. Natl. Acad. Sci. NASA (17 Nov 2010), Structural geology of the Earth's interior, 76, no. 9 http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html