Falling Motion of a circular cylinder interacting dynamically with $N$ point vortices
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 59-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamical behavior of a heavy circular cylinder and $N$ point vortices in an unbounded volume of ideal liquid is considered. The liquid is assumed to be irrotational and at rest at infinity. The circulation about the cylinder is different from zero. The governing equations are presented in Hamiltonian form. Integrals of motion are found. Allowable types of trajectories are discussed in the case $N = 1$. The stability of finding equilibrium solutions is investigated and some remarkable types of partial solutions of the system are presented. Poincaré sections of the system demonstrate chaotic behavior of dynamics, which indicates a non-integrability of the system.
Keywords: point vortices, Hamiltonian systems, reduction, stability of equilibrium solutions.
@article{ND_2014_10_1_a4,
     author = {Sergey V. Sokolov},
     title = {Falling {Motion} of a circular cylinder interacting dynamically with $N$ point vortices},
     journal = {Russian journal of nonlinear dynamics},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_1_a4/}
}
TY  - JOUR
AU  - Sergey V. Sokolov
TI  - Falling Motion of a circular cylinder interacting dynamically with $N$ point vortices
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 59
EP  - 72
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_1_a4/
LA  - ru
ID  - ND_2014_10_1_a4
ER  - 
%0 Journal Article
%A Sergey V. Sokolov
%T Falling Motion of a circular cylinder interacting dynamically with $N$ point vortices
%J Russian journal of nonlinear dynamics
%D 2014
%P 59-72
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_1_a4/
%G ru
%F ND_2014_10_1_a4
Sergey V. Sokolov. Falling Motion of a circular cylinder interacting dynamically with $N$ point vortices. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/ND_2014_10_1_a4/

[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Bifurkatsionnyi analiz i indeks Konli v mekhanike”, Nelineinaya dinamika, 7:3 (2011), 649–681

[2] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 368 pp. | MR

[3] Zhukovskii N. E., “O padenii v vozdukhe legkikh prodolgovatykh tel, vraschayuschikhsya okolo svoei prodolnoi osi, 1”, Sobr. soch., V 9 tt., v. 5, Glav. red. aviats. lit., M.–L., 1937, 72–80

[4] Zhukovskii N. E., “O padenii v vozdukhe legkikh prodolgovatykh tel, vraschayuschikhsya okolo svoei prodolnoi osi, 2”, Sobr. soch., V 9 tt., v. 5, Glav. red. aviats. lit., M.–L., 1937, 100–115

[5] Kirkhgof G., Mekhanika. Lektsii po matematicheskoi fizike, AN SSSR, M., 1962, 404 pp.

[6] Kozlov V. V., “K zadache o padenii tyazhelogo tverdogo tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1990, no. 1, 79–86 | Zbl

[7] Kozlov V. V., “O padenii tyazhelogo tsilindricheskogo tverdogo tela v zhidkosti”, MTT, 1993, no. 4, 113–117

[8] Ramodanov S. M., “O vliyanii tsirkulyatsii na kharakter padeniya tyazhelogo tverdogo tela v zhidkosti”, MTT, 1996, no. 5, 19–24

[9] Sokolov S. V., Ramodanov S. M., “Dvizhenie krugovogo tsilindricheskogo tverdogo tela, vzaimodeistvuyuschego s tochechnym vikhrem, v pole sily tyazhesti”, Nelineinaya dinamika, 8:3 (2012), 617–628

[10] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, AN SSSR, M.–L., 1933, 133–150

[11] Borisov A. V., Kozlov V. V., Mamaev I. S., “Asymptotic stability and associated problems of failing rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl

[12] Borisov A. V., Mamaev I. S., “An integrability of the problem on motion of cylinder and vortex in the ideal fluid”, Regul. Chaotic Dyn., 8:2 (2003), 163–166 | DOI | MR | Zbl

[13] Borisov A. V., Mamaev I. S., “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118, 7 pp. | DOI | MR | Zbl

[14] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Dynamics of a circular cylinder interacting with point vortices”, Discrete Contin. Dyn. Syst. Ser. B, 5:1 (2005), 35–50 | MR | Zbl

[15] Föppl L., Wirbelbewegung hinter einem Kreiszylinder, Verl. d. Königlich-Bayerischen Akad. d. Wiss., München, 1913, 17 pp.

[16] Jones M. A., Shelly M. J., “Falling cards”, J. Fluid Mech., 540 (2005), 393–425 | DOI | MR | Zbl

[17] Kadtke J. B., Novikov E. A., “Chaotic capture of vortices by a moving body. 1: The single point vortex case”, Chaos, 3:4 (1993), 543–553 | DOI | MR | Zbl

[18] Maxwell J. K., “On a particular case of descent of a heavy body in a resisting medium”, Cambridge and Dublin Math. Journ., 9 (1854), 145–148

[19] Michelin S., Llewellyn Smith S. G., “Falling cards and flapping flags: Understanding fluid-solid interaction using an unsteady point vortex model”, Theor. Comput. Fluid Dyn., 24:1–4 (2010), 195–200 | DOI | Zbl

[20] Ramodanov S. M., “Motion of a circular cylinder and a vortex in an ideal fluid”, Regul. Chaotic Dyn., 6:1 (2001), 33–38 | DOI | MR | Zbl

[21] Shashikanth B. N., Marsden J. E., Burdick J. W., Kelly S. D., “The Hamiltonian structure of a two-dimensional rigid circular cylinder interacting dynamically with $N$ point vortices”, Phys. Fluids, 14:3 (2002), 1214–1227 | DOI | MR | Zbl

[22] Sokolov S. V., Ramodanov S. M., “Falling motion of a circular cylinder interacting dynamically with a point vortex”, Regul. Chaotic Dyn., 18:1–2 (2013), 184–193 | DOI | MR | Zbl

[23] Tanabe Y., Kaneko K., “Behavior of a falling paper”, Phys. Rev. Lett., 73:10 (1994), 1372–1375 | DOI | MR