Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_4_a6, author = {Alexander V. Rodnikov}, title = {Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers}, journal = {Russian journal of nonlinear dynamics}, pages = {697--710}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_4_a6/} }
TY - JOUR AU - Alexander V. Rodnikov TI - Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers JO - Russian journal of nonlinear dynamics PY - 2013 SP - 697 EP - 710 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_4_a6/ LA - ru ID - ND_2013_9_4_a6 ER -
%0 Journal Article %A Alexander V. Rodnikov %T Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers %J Russian journal of nonlinear dynamics %D 2013 %P 697-710 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_4_a6/ %G ru %F ND_2013_9_4_a6
Alexander V. Rodnikov. Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 697-710. http://geodesic.mathdoc.fr/item/ND_2013_9_4_a6/
[1] Aksenov E. P., Grebennikov E. A., Demin V. G., “Obobschennaya zadacha dvukh nepodvizhnykh tsentrov i ee primenenie v teorii dvizheniya iskusstvennykh sputnikov Zemli”, Astron. zhurn., 40:2 (1963), 363–375
[2] Szebehely V., Theory of orbits: The restricted problem of three bodies, Academic Press, New York, 1967, 668 pp. | Zbl
[3] Demin V. G., Dvizhenie iskusstvennogo sputnika v netsentralnom pole tyagoteniya, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevskii institut kompyuternykh issledovanii, M.–Izhevsk, 2010, 420 pp.
[4] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.
[5] Kosenko I. I., “O tochkakh libratsii vblizi gravitiruyuschego vraschayuschegosya trekhosnogo ellipsoida”, PMM, 45:1 (1981), 26–33 | MR | Zbl
[6] Kosenko I. I., “Tochki libratsii v zadache o trekhosnom gravitiruyuschem ellipsoide: Geometriya oblasti ustoichivosti”, Kosmicheskie issledovaniya, 19:2 (1981), 200–209
[7] Vasilkova O. O., “Three-dimensional periodic motion in the vicinity of the equilibrium points of an asteroid”, Astron. Astrophys., 430:2 (2005), 713–723 | DOI | Zbl
[8] Rodnikov A. V., “O polozheniyakh ravnovesiya gruza na trose, zakreplennom na gantelevidnoi kosmicheskoi stantsii, dvizhuscheisya po krugovoi geotsentricheskoi orbite”, Kosmicheskie issledovaniya, 44:1 (2006), 62–72
[9] Beletskii V. V., “Obobschennaya ogranichennaya krugovaya zadacha trekh tel kak model dinamiki dvoinykh asteroidov”, Kosmicheskie issledovaniya, 45:6 (2007), 435–442
[10] Beletskii V. V., Rodnikov A. V., “Ob ustoichivosti treugolnykh tochek libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Kosmicheskie issledovaniya, 46:1 (2008), 42–50 | Zbl
[11] Beletsky V. V., Rodnikov A. V., “On evolution of libration points similar to Eulerian in the model problem of the binary-asteroids dynamics”, J. Vibroeng., 10:4 (2008), 550–556
[12] Rodnikov A. V., “O dvizhenii materialnoi tochki vdol leera, zakreplennogo na pretsessiruyuschem tverdom tele”, Nelineinaya dinamika, 7:2 (2011), 295–311 | Zbl
[13] Beletskii V. V., Rodnikov A. V., “Komplanarnye tochki libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Nelineinaya dinamika, 7:3 (2011), 569–576
[14] Beletskii V. V., Rodnikov A. V., “Tochki libratsii obobschennoi ogranichennoi krugovoi zadachi trekh tel v sluchae mnimogo rasstoyaniya mezhdu prityagivayuschimi tsentrami”, Nelineinaya dinamika, 8:5 (2012), 931–940