Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 697-710.

Voir la notice de l'article provenant de la source Math-Net.Ru

A particle relative equilibria near a rigid body in the plane passing through the body axes of precession and of dynamical symmetry are studied in assumption that the body gravitational field can be composed as gravitational field of two conjugate complex masses being on imaginary distance. Using terminology of the Generalized Restricted Circular Problem of Three Bodies, these equilibria are called Coplanar Libration Points (CLP). One can show that CLP set is divided into three subsets dependently on CLPs type of evolution. There are 2 “external” CLPs going from infinity to the rigid body if precession angular velocity goes from zero to infinity, from 2 to 6 “internal” CLPs between axis of precession and axis of dynamical symmetry, and from 0 to 3 “central” CLPs near singular points of gravitational potential. Numerical-analitical algorithm of CLPs coordinates computation is suggested. This algorithm is based on some special trigonometrical transformations of coordinates and parameters.
Keywords: problem of three bodies, libration points, relative equilibrium, rigid body, regular precession.
@article{ND_2013_9_4_a6,
     author = {Alexander V. Rodnikov},
     title = {Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers},
     journal = {Russian journal of nonlinear dynamics},
     pages = {697--710},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_4_a6/}
}
TY  - JOUR
AU  - Alexander V. Rodnikov
TI  - Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 697
EP  - 710
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_4_a6/
LA  - ru
ID  - ND_2013_9_4_a6
ER  - 
%0 Journal Article
%A Alexander V. Rodnikov
%T Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers
%J Russian journal of nonlinear dynamics
%D 2013
%P 697-710
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_4_a6/
%G ru
%F ND_2013_9_4_a6
Alexander V. Rodnikov. Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 697-710. http://geodesic.mathdoc.fr/item/ND_2013_9_4_a6/

[1] Aksenov E. P., Grebennikov E. A., Demin V. G., “Obobschennaya zadacha dvukh nepodvizhnykh tsentrov i ee primenenie v teorii dvizheniya iskusstvennykh sputnikov Zemli”, Astron. zhurn., 40:2 (1963), 363–375

[2] Szebehely V., Theory of orbits: The restricted problem of three bodies, Academic Press, New York, 1967, 668 pp. | Zbl

[3] Demin V. G., Dvizhenie iskusstvennogo sputnika v netsentralnom pole tyagoteniya, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevskii institut kompyuternykh issledovanii, M.–Izhevsk, 2010, 420 pp.

[4] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[5] Kosenko I. I., “O tochkakh libratsii vblizi gravitiruyuschego vraschayuschegosya trekhosnogo ellipsoida”, PMM, 45:1 (1981), 26–33 | MR | Zbl

[6] Kosenko I. I., “Tochki libratsii v zadache o trekhosnom gravitiruyuschem ellipsoide: Geometriya oblasti ustoichivosti”, Kosmicheskie issledovaniya, 19:2 (1981), 200–209

[7] Vasilkova O. O., “Three-dimensional periodic motion in the vicinity of the equilibrium points of an asteroid”, Astron. Astrophys., 430:2 (2005), 713–723 | DOI | Zbl

[8] Rodnikov A. V., “O polozheniyakh ravnovesiya gruza na trose, zakreplennom na gantelevidnoi kosmicheskoi stantsii, dvizhuscheisya po krugovoi geotsentricheskoi orbite”, Kosmicheskie issledovaniya, 44:1 (2006), 62–72

[9] Beletskii V. V., “Obobschennaya ogranichennaya krugovaya zadacha trekh tel kak model dinamiki dvoinykh asteroidov”, Kosmicheskie issledovaniya, 45:6 (2007), 435–442

[10] Beletskii V. V., Rodnikov A. V., “Ob ustoichivosti treugolnykh tochek libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Kosmicheskie issledovaniya, 46:1 (2008), 42–50 | Zbl

[11] Beletsky V. V., Rodnikov A. V., “On evolution of libration points similar to Eulerian in the model problem of the binary-asteroids dynamics”, J. Vibroeng., 10:4 (2008), 550–556

[12] Rodnikov A. V., “O dvizhenii materialnoi tochki vdol leera, zakreplennogo na pretsessiruyuschem tverdom tele”, Nelineinaya dinamika, 7:2 (2011), 295–311 | Zbl

[13] Beletskii V. V., Rodnikov A. V., “Komplanarnye tochki libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Nelineinaya dinamika, 7:3 (2011), 569–576

[14] Beletskii V. V., Rodnikov A. V., “Tochki libratsii obobschennoi ogranichennoi krugovoi zadachi trekh tel v sluchae mnimogo rasstoyaniya mezhdu prityagivayuschimi tsentrami”, Nelineinaya dinamika, 8:5 (2012), 931–940