Group classification of discrete dynamical systems
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 641-650.

Voir la notice de l'article provenant de la source Math-Net.Ru

An application of Lie groups of transformations theory for analysis of discrete dynamical systems is showed in this article. Families of two-dimensional and three-dimensional discrete dynamical systems with two-parameter and three-parameter Lie groups of transformations as continuous symmetries were obtained with using of classifications of two-dimensional and three-dimensional Lie algebras.
Keywords: discrete dynamical system, continuous symmetry
Mots-clés : group classification, Lie group.
@article{ND_2013_9_4_a2,
     author = {P. V. Markov},
     title = {Group classification of discrete dynamical systems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {641--650},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_4_a2/}
}
TY  - JOUR
AU  - P. V. Markov
TI  - Group classification of discrete dynamical systems
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 641
EP  - 650
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_4_a2/
LA  - ru
ID  - ND_2013_9_4_a2
ER  - 
%0 Journal Article
%A P. V. Markov
%T Group classification of discrete dynamical systems
%J Russian journal of nonlinear dynamics
%D 2013
%P 641-650
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_4_a2/
%G ru
%F ND_2013_9_4_a2
P. V. Markov. Group classification of discrete dynamical systems. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 641-650. http://geodesic.mathdoc.fr/item/ND_2013_9_4_a2/

[1] Cicogna G., Gaeta G., On symmetry and normal form theory, Preprint, 1995

[2] Dorodnitsyn V., Kozlov R., Winternitz P., “Lie group classification of second-order ordinary difference equations”, J. Math. Phys., 41:1 (2000), 480–504 | DOI | MR | Zbl

[3] Gómez-Ullate D., Lafortune S., Winternitz P., “Symmetries of discrete dynamical systems involving two species”, J. Math. Phys., 40:6 (1999), 2782–2804 | DOI | MR

[4] Khabirov S. V., “Classification of three-dimensional Lie algebras in $R^3$ and their second-order differential invariants”, Lobachevskii J. Math., 31:2 (2010), 152–156 | DOI | MR | Zbl

[5] Levi D., Winternitz P., “Symmetries of discrete dynamical systems”, J. Math. Phys., 37:11 (1996), 5551–5576 | DOI | MR | Zbl

[6] Levi D., Winternitz P., Continuous symmetries of difference equations, 5 Feb. 2008, arXiv: nlin/0502004v1 | MR

[7] Lie S., Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1891, 568 pp. | Zbl

[8] Maeda S., “Canonical structure and symmetries for discrete systems”, Math. Japon., 25:4 (1980), 405–420 | MR | Zbl

[9] Maeda S., “The similarity method for difference equations”, IMA J. Appl. Math., 38:2 (1987), 129–134 | DOI | MR | Zbl

[10] Moritz B., Schwalm W., Uherka D., “Finding Lie groups that reduce the order of discrete dynamical systems”, J. Phys. A, 31:36 (1998), 7379–7402 | DOI | MR | Zbl

[11] Winternitz P., Symmetries of discrete systems, 22 Sep. 2003, arXiv: nlin/0309058v1 | MR

[12] Adler V. E., Klassifikatsiya diskretnykh integriruemykh uravnenii, Dis. ... dokt. fiz.-mat. nauk, ITF im. L. D. Landau, M., 2010, 289 pp.

[13] Bobrovski D., Vvedenie v teoriyu dinamicheskikh sistem s diskretnym vremenem, NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kompyuternykh issledovanii, M.–Izhevsk, 2006, 360 pp.

[14] Golovin S. V., Chesnokov A. A., Gruppovoi analiz differentsialnykh uravnenii, Novosib. gos. un-t, Novosibirsk, 2008, 113 pp.

[15] Dorodnitsyn V. A., “Gruppy preobrazovanii v setochnykh prostranstvakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 34, VINITI, M., 1989, 149–190

[16] Dorodnitsyn V. A., Gruppovye svoistva raznostnykh uravnenii, Fizmatlit, M., 2001, 240 pp.

[17] Ibragimov N. Kh., Opyt gruppovogo analiza, Znanie, M., 1991, 48 pp.

[18] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 416 pp.

[19] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 428 pp.

[20] Yanenko N. N., Shokin Yu. I., “O gruppovoi klassifikatsii raznostnykh skhem dlya sistemy uravnenii gazovoi dinamiki”, Tr. MIAN SSSR, 122, 1973, 85–96