The equation of state of an ideal gas in two connected vessels
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 435-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-dimensional collisionless ideal gas in the two vessels. In one of them particles behavior is ergodic. Another one is known to be nonergodic. Significant part of the phase space of this vessel is occupied by islands of stability. It is shown, that gas pressure is uniform in the first vessel and highly uneven in second one. Distribution of particle residence times was considered. For nonergodic vessel it is found to be quite unusual: delta spikes on small times, then several sites of chopped sedate decay and finally exponential tail. Such unusual dependence is found to be connected with islands of stability, destroyed after vessels interconnection. Equation of gas state in the first vessel is obtained. It differs from the ordinary equation of ideal gas state by an amendment to the vessel's volume. In this way vessel's boundary affects the equation of gas state. Correlation of this amendment with a share of the phase space under remaining intact islands of stability is shown.
Keywords: nonergodicity, ideal gas, equation of state, connected vessels, establishment of a stationary state.
@article{ND_2013_9_3_a3,
     author = {Dmitry M. Naplekov and Vladimir P. Seminozhenko and Vladimir V. Yanovsky},
     title = {The equation of state of an ideal gas in two connected vessels},
     journal = {Russian journal of nonlinear dynamics},
     pages = {435--457},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a3/}
}
TY  - JOUR
AU  - Dmitry M. Naplekov
AU  - Vladimir P. Seminozhenko
AU  - Vladimir V. Yanovsky
TI  - The equation of state of an ideal gas in two connected vessels
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 435
EP  - 457
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a3/
LA  - ru
ID  - ND_2013_9_3_a3
ER  - 
%0 Journal Article
%A Dmitry M. Naplekov
%A Vladimir P. Seminozhenko
%A Vladimir V. Yanovsky
%T The equation of state of an ideal gas in two connected vessels
%J Russian journal of nonlinear dynamics
%D 2013
%P 435-457
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a3/
%G ru
%F ND_2013_9_3_a3
Dmitry M. Naplekov; Vladimir P. Seminozhenko; Vladimir V. Yanovsky. The equation of state of an ideal gas in two connected vessels. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 435-457. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a3/

[1] Galperin G. A., Chernov N. I., Billiardy i khaos, Znanie, M., 1991, 46 pp. | MR

[2] Zaslavsky G. M., Edelman M., “Maxwell's demon as a dynamical model”, Phys. Rev. E, 56:5 (1997), 5310–5320 | DOI | MR

[3] Schneider J., Tel T., “Extracting flow structures from tracer data”, Ocean Dynamics, 53:2 (2003), 64–72 | DOI

[4] Tuval I., Schneider J., Piro O., Tel T., “Opening up fractal structures of three-dimensional flows via leaking”, Europhys. Lett., 65:5 (2004), 633–639 | DOI

[5] Nagler J., “Crash test for the restricted three-body problem”, Phys. Rev. E, 71:2 (2005), 026227, 11 | DOI | MR

[6] Motter A., “Mixmaster chaos”, Phys. Lett. A, 285:3–4 (2001), 127–131 | DOI | MR | Zbl

[7] Altmann E. G., “Emission from dielectric cavities in terms of invariant sets of the chaotic ray dynamics”, Phys. Rev. A, 79:1 (2009), 013830, 9 pp. | DOI | MR

[8] Dettmann C. P., Morozov G. V., Sieber M., Waalkens H., “Unidirectional emission from circular dielectric microresonators with a point scatterer”, Phys. Rev. A, 80:6 (2009), 063813, 11 pp. | DOI | MR

[9] Shinohara S., Harayama T., Fukushima T., Hentschel M., Sunada S., Narimanov E., “Chaos-assisted emission from asymmetric resonant cavity microlasers”, Phys. Rev. A, 83:5 (2011), 053837, 8 pp. | DOI

[10] Portela J. S., Caldas I. L., Viana R. L., “Tokamak magnetic field lines described by simple maps”, Eur. Phys. J. Special Topics, 165:1 (2008), 195–205 | DOI

[11] Bunimovich L. A., Dettmann C. P., “Peeping at chaos: Nondestructive monitoring of chaotic systems by measuring long-time escape rates”, Europhys. Lett., 80:4 (2007), 40001, 6 pp. | DOI | MR

[12] Buljan H., Paar V., “Many-hole interactions and the average lifetimes of chaotic transients that precede controlled periodic motion”, Phys. Rev. E, 63:6 (2001), 066205, 13 pp. | DOI

[13] Aguirre J., Sanjuan M., “Limit of small exits in open Hamiltonian systems”, Phys. Rev. E, 67:5 (2003), 056201, 7 pp. | DOI | MR

[14] Bleher S., Grebogi C., Ott E., Brown R., “Fractal boundaries for exit in Hamiltonian dynamics”, Phys. Rev. A, 38:2 (1988), 930–938 | DOI | MR

[15] Chirikov B., Shepelyansky D. L., “Correlation properties of dynamical chaos in Hamiltonian systems”, Phys. D, 13:3 (1984), 395–400 | DOI | MR | Zbl

[16] Zaslavsky G. M., “Chaos, fractional kinetics, and anomalous transport”, Phys. Rep., 371:6 (2002), 461–580 | DOI | MR | Zbl

[17] Jacquod P., Petitjean C., “Decoherence, entanglement and irreversibility in quantum dynamical systems with few degrees of freedom”, Adv. Phys., 58:2 (2009), 67–196 | DOI

[18] Altmann E. G., Portela J. S. E., Tel T., “Leaking chaotic systems”, Rev. Mod. Phys., 85:2 (2013), 869–918 | DOI

[19] Bauerand W., Bertsch G. F., “Decay of ordered and chaotic systems”, Phys. Rev. Lett., 65:18 (1990), 2213–2216 | DOI

[20] Fendrik A. J., Rivas A. M. F., Sánchez M. J., “Decay of quasibounded classical Hamiltonian systems and their internal dynamics”, Phys. Rev. E, 50:3 (1994), 1948–1958 | DOI | MR

[21] Alt H., Gräf H. D., Harney H. L., Hofferbert R., Rehfeld H., Richter A., Schardt P., “Decay of classical chaotic systems: The case of the Bunimovich stadium”, Phys. Rev. E, 53:3 (1996), 2217–2222 | DOI | MR

[22] Dettmann C. P., Georgiou O., “Transmission and reflection in the stadium billiard: Time-dependent asymmetric transport”, Phys. Rev. E, 83:3 (2011), 036212, 5 pp. | DOI | MR

[23] Donnay V. J., “Non-ergodicity of two particles interacting via a smooth potential”, J. Stat. Phys., 96:5–6 (1999), 1021–1048 | DOI | MR | Zbl

[24] Kaplan A., Friedman N., Andersen M., Davidson N., “Observation of islands of stability in soft wall atom-optics billiards”, Phys. Rev. Lett., 87:27 (2001), 274101, 4 pp. | DOI

[25] Kozlov V. V., Teplovoe ravnovesie po Gibbsu i Puankare, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 320 pp. | MR | Zbl

[26] Vaskin V. V., Erdakova N. N., Mamaev I. S., “Statisticheskaya mekhanika nelineinykh dinamicheskikh sistem”, Nelineinaya dinamika, 5:3 (2000), 385–402

[27] Kozlov V. V., Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2008, 204 pp. | Zbl

[28] Naidenov S. V., Yanovskii V. V., “Geometro-dinamicheskii podkhod k bilyardnym sistemam. 1: Proektivnaya involyutsiya bilyarda. Pryamaya i obratnaya zadachi”, TMF, 127:1 (2001), 110–124 | DOI | MR | Zbl

[29] Naidenov S. V., Yanovskii V. V., “Geometro-dinamicheskii podkhod k billiardnym sistemam. 2: Geometricheskie osobennosti involyutsii”, TMF, 129:1 (2001), 116–130 | DOI | MR | Zbl

[30] Casati G., Prosen T., “Mixing property of triangular billiards”, Phys. Rev. Lett., 83:23 (1999), 4729–4732 | DOI | MR

[31] Sekei G., Paradoksy v teorii veroyatnostei i matematicheskoi statistike, Mir, M., 1990, 240 pp. | MR