Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_3_a3, author = {Dmitry M. Naplekov and Vladimir P. Seminozhenko and Vladimir V. Yanovsky}, title = {The equation of state of an ideal gas in two connected vessels}, journal = {Russian journal of nonlinear dynamics}, pages = {435--457}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a3/} }
TY - JOUR AU - Dmitry M. Naplekov AU - Vladimir P. Seminozhenko AU - Vladimir V. Yanovsky TI - The equation of state of an ideal gas in two connected vessels JO - Russian journal of nonlinear dynamics PY - 2013 SP - 435 EP - 457 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a3/ LA - ru ID - ND_2013_9_3_a3 ER -
%0 Journal Article %A Dmitry M. Naplekov %A Vladimir P. Seminozhenko %A Vladimir V. Yanovsky %T The equation of state of an ideal gas in two connected vessels %J Russian journal of nonlinear dynamics %D 2013 %P 435-457 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a3/ %G ru %F ND_2013_9_3_a3
Dmitry M. Naplekov; Vladimir P. Seminozhenko; Vladimir V. Yanovsky. The equation of state of an ideal gas in two connected vessels. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 435-457. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a3/
[1] Galperin G. A., Chernov N. I., Billiardy i khaos, Znanie, M., 1991, 46 pp. | MR
[2] Zaslavsky G. M., Edelman M., “Maxwell's demon as a dynamical model”, Phys. Rev. E, 56:5 (1997), 5310–5320 | DOI | MR
[3] Schneider J., Tel T., “Extracting flow structures from tracer data”, Ocean Dynamics, 53:2 (2003), 64–72 | DOI
[4] Tuval I., Schneider J., Piro O., Tel T., “Opening up fractal structures of three-dimensional flows via leaking”, Europhys. Lett., 65:5 (2004), 633–639 | DOI
[5] Nagler J., “Crash test for the restricted three-body problem”, Phys. Rev. E, 71:2 (2005), 026227, 11 | DOI | MR
[6] Motter A., “Mixmaster chaos”, Phys. Lett. A, 285:3–4 (2001), 127–131 | DOI | MR | Zbl
[7] Altmann E. G., “Emission from dielectric cavities in terms of invariant sets of the chaotic ray dynamics”, Phys. Rev. A, 79:1 (2009), 013830, 9 pp. | DOI | MR
[8] Dettmann C. P., Morozov G. V., Sieber M., Waalkens H., “Unidirectional emission from circular dielectric microresonators with a point scatterer”, Phys. Rev. A, 80:6 (2009), 063813, 11 pp. | DOI | MR
[9] Shinohara S., Harayama T., Fukushima T., Hentschel M., Sunada S., Narimanov E., “Chaos-assisted emission from asymmetric resonant cavity microlasers”, Phys. Rev. A, 83:5 (2011), 053837, 8 pp. | DOI
[10] Portela J. S., Caldas I. L., Viana R. L., “Tokamak magnetic field lines described by simple maps”, Eur. Phys. J. Special Topics, 165:1 (2008), 195–205 | DOI
[11] Bunimovich L. A., Dettmann C. P., “Peeping at chaos: Nondestructive monitoring of chaotic systems by measuring long-time escape rates”, Europhys. Lett., 80:4 (2007), 40001, 6 pp. | DOI | MR
[12] Buljan H., Paar V., “Many-hole interactions and the average lifetimes of chaotic transients that precede controlled periodic motion”, Phys. Rev. E, 63:6 (2001), 066205, 13 pp. | DOI
[13] Aguirre J., Sanjuan M., “Limit of small exits in open Hamiltonian systems”, Phys. Rev. E, 67:5 (2003), 056201, 7 pp. | DOI | MR
[14] Bleher S., Grebogi C., Ott E., Brown R., “Fractal boundaries for exit in Hamiltonian dynamics”, Phys. Rev. A, 38:2 (1988), 930–938 | DOI | MR
[15] Chirikov B., Shepelyansky D. L., “Correlation properties of dynamical chaos in Hamiltonian systems”, Phys. D, 13:3 (1984), 395–400 | DOI | MR | Zbl
[16] Zaslavsky G. M., “Chaos, fractional kinetics, and anomalous transport”, Phys. Rep., 371:6 (2002), 461–580 | DOI | MR | Zbl
[17] Jacquod P., Petitjean C., “Decoherence, entanglement and irreversibility in quantum dynamical systems with few degrees of freedom”, Adv. Phys., 58:2 (2009), 67–196 | DOI
[18] Altmann E. G., Portela J. S. E., Tel T., “Leaking chaotic systems”, Rev. Mod. Phys., 85:2 (2013), 869–918 | DOI
[19] Bauerand W., Bertsch G. F., “Decay of ordered and chaotic systems”, Phys. Rev. Lett., 65:18 (1990), 2213–2216 | DOI
[20] Fendrik A. J., Rivas A. M. F., Sánchez M. J., “Decay of quasibounded classical Hamiltonian systems and their internal dynamics”, Phys. Rev. E, 50:3 (1994), 1948–1958 | DOI | MR
[21] Alt H., Gräf H. D., Harney H. L., Hofferbert R., Rehfeld H., Richter A., Schardt P., “Decay of classical chaotic systems: The case of the Bunimovich stadium”, Phys. Rev. E, 53:3 (1996), 2217–2222 | DOI | MR
[22] Dettmann C. P., Georgiou O., “Transmission and reflection in the stadium billiard: Time-dependent asymmetric transport”, Phys. Rev. E, 83:3 (2011), 036212, 5 pp. | DOI | MR
[23] Donnay V. J., “Non-ergodicity of two particles interacting via a smooth potential”, J. Stat. Phys., 96:5–6 (1999), 1021–1048 | DOI | MR | Zbl
[24] Kaplan A., Friedman N., Andersen M., Davidson N., “Observation of islands of stability in soft wall atom-optics billiards”, Phys. Rev. Lett., 87:27 (2001), 274101, 4 pp. | DOI
[25] Kozlov V. V., Teplovoe ravnovesie po Gibbsu i Puankare, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 320 pp. | MR | Zbl
[26] Vaskin V. V., Erdakova N. N., Mamaev I. S., “Statisticheskaya mekhanika nelineinykh dinamicheskikh sistem”, Nelineinaya dinamika, 5:3 (2000), 385–402
[27] Kozlov V. V., Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2008, 204 pp. | Zbl
[28] Naidenov S. V., Yanovskii V. V., “Geometro-dinamicheskii podkhod k bilyardnym sistemam. 1: Proektivnaya involyutsiya bilyarda. Pryamaya i obratnaya zadachi”, TMF, 127:1 (2001), 110–124 | DOI | MR | Zbl
[29] Naidenov S. V., Yanovskii V. V., “Geometro-dinamicheskii podkhod k billiardnym sistemam. 2: Geometricheskie osobennosti involyutsii”, TMF, 129:1 (2001), 116–130 | DOI | MR | Zbl
[30] Casati G., Prosen T., “Mixing property of triangular billiards”, Phys. Rev. Lett., 83:23 (1999), 4729–4732 | DOI | MR
[31] Sekei G., Paradoksy v teorii veroyatnostei i matematicheskoi statistike, Mir, M., 1990, 240 pp. | MR