Experimental investigation of stochastic Andronov–Hopf bifurcation in self-sustained oscillators with additive and parametric noise
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 421-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Effects of noisy influence on oscillators near oscillation threshold are studied by means of numerical simulation and natural experiments. Two qualitative different models (Van der Pol and Anishchenko–Astakhov self-sustained oscillators) are considered. Evolution laws of probabilistic distribution with increase of noise intensity are established for two cases: addition of additive and parametric white gaussian noise in researched systems. It is shown that the noise destroys the distribution form, which is typical for self-oscillations, that leads to shift of bifurcation to direction of excitation parameter increase. The existence of bifurcation interval, which corresponds with gradual transition to regime of self-oscillation, was detected from experiments with additive noise.
Keywords: noisy dynamical systems, self-oscillations, additive noise, parametric noise.
Mots-clés : bifurcations
@article{ND_2013_9_3_a2,
     author = {Vladimir V. Semenov and Kirill V. Zakoretskii and Tatyana E. Vadivasova},
     title = {Experimental investigation of stochastic {Andronov{\textendash}Hopf} bifurcation in self-sustained oscillators with additive and parametric noise},
     journal = {Russian journal of nonlinear dynamics},
     pages = {421--434},
     year = {2013},
     volume = {9},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a2/}
}
TY  - JOUR
AU  - Vladimir V. Semenov
AU  - Kirill V. Zakoretskii
AU  - Tatyana E. Vadivasova
TI  - Experimental investigation of stochastic Andronov–Hopf bifurcation in self-sustained oscillators with additive and parametric noise
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 421
EP  - 434
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a2/
LA  - ru
ID  - ND_2013_9_3_a2
ER  - 
%0 Journal Article
%A Vladimir V. Semenov
%A Kirill V. Zakoretskii
%A Tatyana E. Vadivasova
%T Experimental investigation of stochastic Andronov–Hopf bifurcation in self-sustained oscillators with additive and parametric noise
%J Russian journal of nonlinear dynamics
%D 2013
%P 421-434
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a2/
%G ru
%F ND_2013_9_3_a2
Vladimir V. Semenov; Kirill V. Zakoretskii; Tatyana E. Vadivasova. Experimental investigation of stochastic Andronov–Hopf bifurcation in self-sustained oscillators with additive and parametric noise. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 421-434. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a2/

[1] Benzi R., Vulpiani A., “The mechanism of stochastic resonance”, J. Phys. A, 14 (1981), L453–L457 | DOI | MR

[2] Gammaitoni L., Marchesoni F., Menichella-Saetta E., Santucci S., “Stochastic resonance in bistable systems”, Phys. Rev. Lett., 62 (1989), 349–352 | DOI

[3] Anischenko V. S., Neiman A. B., Moss F., Shimanskii-Gaer L., “Stokhasticheskii rezonans: indutsirovannyi shumom poryadok”, UFN, 42:1 (1999), 7–36 | DOI

[4] Pikovsky A., Kurths J., “Coherence resonance in a noisy driven excitable system”, Phys. Rev. Lett., 78 (1997), 775–778 | DOI | MR | Zbl

[5] Lindner B., Schimansky-Geier L., “Analytical approach to the stochastic FizHugh–Nagomo system and coherence resonance”, Phys. Rev. E, 60:6 (1999), 7270–7277 | DOI | MR

[6] Neiman A. B., “Synchronizationlike phenomena in coupled stochastic bistable systems”, Phys. Rev. E, 49 (1994), 3484–3488 | DOI

[7] Shulgin B., Neiman A., Anishchenko V., “Mean switching frequency locking in stochastic bistable system driven by periodic force”, Phys. Rev. Lett., 75:23 (1995), 4157–4161 | DOI

[8] Han S. K., Yim T. G., Postnov D. E., Sosnovtseva O. V., “Interacting coherence resonance oscillators”, Phys. Rev. Lett., 83:9 (1999), 1771–1774 | DOI

[9] Anischenko V. S., Safonova M. A., “Indutsirovannoe shumom eksponentsialnoe razbeganie fazovykh traektorii v okrestnosti regulyarnykh attraktorov”, Pisma v ZhTF, 12:12 (1986), 740–744

[10] Ebeling W., Herzel H., Richert W., Schimansky-Geier L., “Influence of noise on Duffing–van der Pol oscillators”, ZAMM, 66 (1986), 141–146 | DOI | MR | Zbl

[11] Schimansky-Geier L., Herzel H., “Positive Lyapunov exponents in the Kramers oscillator”, J. Stat. Phys., 70 (1993), 141–147 | DOI | Zbl

[12] Koronovskii A. A., Moskalenko O. I., Trubetskov D. I., Khramov A. E., “Obobschennaya sinkhronizatsiya i sinkhronizatsiya, indutsirovannaya shumom, edinyi tip povedeniya svyazannykh khaoticheskikh sistem”, Dokl. RAN, 407:6 (2006), 761–765 | Zbl

[13] Goldobin D. S., Pikovsky A., “Synchronization and desynchronization of self-sustained oscillators by common noise”, Phys. Rev. E, 71 (2005), 045201, 4 pp. | DOI | MR

[14] Khorstkhemke V., Lefevr R., Indutsirovannye shumom perekhody, Mir, M., 1987, 400 pp. | MR

[15] Arnold L., Random dynamical systems, Springer Monogr. Math., Springer, Berlin, 1998, 586 pp. | DOI | MR

[16] Lefever R., Turner J., “Sensitivity of a Hopf bifurcation to multiplicative colored noise”, Phys. Rev. Lett., 56 (1986), 1631–1634 | DOI | MR

[17] Olarrea J., de la Rubia F. J., “Stochastic Hopf bifurcation: The effect of colored noise on the bifurcation interval”, Phys. Rev. E, 53:1 (1996), 268–271 | DOI

[18] Arnold L., Sri Namachshivaya N., Schenk-Yopp K. R., “Toward an understanding of stochastic Hopf bifurcation: A base study”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 1947–1975 | DOI | MR

[19] Bashkirtseva I., Ryashko L., Schurz H., “Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances”, Chaos Solitons Fractals, 39 (2009), 7–16 | DOI | MR

[20] Bashkirtseva I. A., Perevalova T. V., Ryashko L. B., “Analiz indutsirovannykh shumom bifurkatsii v sisteme Khopfa”, PND, 18:1 (2010), 37–50 | Zbl

[21] Zakharova A., Vadivasova T., Anishenko V., Koseska A., Kurths J., “Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator”, Phys. Rev. E, 81:1 (2010), 011106, 6 pp. | DOI

[22] Franzoni L., Mannella R., McClintock P., Moss F., “Postponement of Hopf bifurcations by multiplicative colored noise”, Phys. Rev. A, 36:2 (1987), 834–841 | DOI

[23] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh, 2-e izd., URSS, M., 2009, 320 pp.