Experimental investigation of stochastic Andronov--Hopf bifurcation in self-sustained oscillators with additive and parametric noise
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 421-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

Effects of noisy influence on oscillators near oscillation threshold are studied by means of numerical simulation and natural experiments. Two qualitative different models (Van der Pol and Anishchenko–Astakhov self-sustained oscillators) are considered. Evolution laws of probabilistic distribution with increase of noise intensity are established for two cases: addition of additive and parametric white gaussian noise in researched systems. It is shown that the noise destroys the distribution form, which is typical for self-oscillations, that leads to shift of bifurcation to direction of excitation parameter increase. The existence of bifurcation interval, which corresponds with gradual transition to regime of self-oscillation, was detected from experiments with additive noise.
Keywords: noisy dynamical systems, self-oscillations, additive noise, parametric noise.
Mots-clés : bifurcations
@article{ND_2013_9_3_a2,
     author = {Vladimir V. Semenov and Kirill V. Zakoretskii and Tatyana E. Vadivasova},
     title = {Experimental investigation of stochastic {Andronov--Hopf} bifurcation in self-sustained oscillators with additive and parametric noise},
     journal = {Russian journal of nonlinear dynamics},
     pages = {421--434},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a2/}
}
TY  - JOUR
AU  - Vladimir V. Semenov
AU  - Kirill V. Zakoretskii
AU  - Tatyana E. Vadivasova
TI  - Experimental investigation of stochastic Andronov--Hopf bifurcation in self-sustained oscillators with additive and parametric noise
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 421
EP  - 434
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a2/
LA  - ru
ID  - ND_2013_9_3_a2
ER  - 
%0 Journal Article
%A Vladimir V. Semenov
%A Kirill V. Zakoretskii
%A Tatyana E. Vadivasova
%T Experimental investigation of stochastic Andronov--Hopf bifurcation in self-sustained oscillators with additive and parametric noise
%J Russian journal of nonlinear dynamics
%D 2013
%P 421-434
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a2/
%G ru
%F ND_2013_9_3_a2
Vladimir V. Semenov; Kirill V. Zakoretskii; Tatyana E. Vadivasova. Experimental investigation of stochastic Andronov--Hopf bifurcation in self-sustained oscillators with additive and parametric noise. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 421-434. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a2/

[1] Benzi R., Vulpiani A., “The mechanism of stochastic resonance”, J. Phys. A, 14 (1981), L453–L457 | DOI | MR

[2] Gammaitoni L., Marchesoni F., Menichella-Saetta E., Santucci S., “Stochastic resonance in bistable systems”, Phys. Rev. Lett., 62 (1989), 349–352 | DOI

[3] Anischenko V. S., Neiman A. B., Moss F., Shimanskii-Gaer L., “Stokhasticheskii rezonans: indutsirovannyi shumom poryadok”, UFN, 42:1 (1999), 7–36 | DOI

[4] Pikovsky A., Kurths J., “Coherence resonance in a noisy driven excitable system”, Phys. Rev. Lett., 78 (1997), 775–778 | DOI | MR | Zbl

[5] Lindner B., Schimansky-Geier L., “Analytical approach to the stochastic FizHugh–Nagomo system and coherence resonance”, Phys. Rev. E, 60:6 (1999), 7270–7277 | DOI | MR

[6] Neiman A. B., “Synchronizationlike phenomena in coupled stochastic bistable systems”, Phys. Rev. E, 49 (1994), 3484–3488 | DOI

[7] Shulgin B., Neiman A., Anishchenko V., “Mean switching frequency locking in stochastic bistable system driven by periodic force”, Phys. Rev. Lett., 75:23 (1995), 4157–4161 | DOI

[8] Han S. K., Yim T. G., Postnov D. E., Sosnovtseva O. V., “Interacting coherence resonance oscillators”, Phys. Rev. Lett., 83:9 (1999), 1771–1774 | DOI

[9] Anischenko V. S., Safonova M. A., “Indutsirovannoe shumom eksponentsialnoe razbeganie fazovykh traektorii v okrestnosti regulyarnykh attraktorov”, Pisma v ZhTF, 12:12 (1986), 740–744

[10] Ebeling W., Herzel H., Richert W., Schimansky-Geier L., “Influence of noise on Duffing–van der Pol oscillators”, ZAMM, 66 (1986), 141–146 | DOI | MR | Zbl

[11] Schimansky-Geier L., Herzel H., “Positive Lyapunov exponents in the Kramers oscillator”, J. Stat. Phys., 70 (1993), 141–147 | DOI | Zbl

[12] Koronovskii A. A., Moskalenko O. I., Trubetskov D. I., Khramov A. E., “Obobschennaya sinkhronizatsiya i sinkhronizatsiya, indutsirovannaya shumom, edinyi tip povedeniya svyazannykh khaoticheskikh sistem”, Dokl. RAN, 407:6 (2006), 761–765 | Zbl

[13] Goldobin D. S., Pikovsky A., “Synchronization and desynchronization of self-sustained oscillators by common noise”, Phys. Rev. E, 71 (2005), 045201, 4 pp. | DOI | MR

[14] Khorstkhemke V., Lefevr R., Indutsirovannye shumom perekhody, Mir, M., 1987, 400 pp. | MR

[15] Arnold L., Random dynamical systems, Springer Monogr. Math., Springer, Berlin, 1998, 586 pp. | DOI | MR

[16] Lefever R., Turner J., “Sensitivity of a Hopf bifurcation to multiplicative colored noise”, Phys. Rev. Lett., 56 (1986), 1631–1634 | DOI | MR

[17] Olarrea J., de la Rubia F. J., “Stochastic Hopf bifurcation: The effect of colored noise on the bifurcation interval”, Phys. Rev. E, 53:1 (1996), 268–271 | DOI

[18] Arnold L., Sri Namachshivaya N., Schenk-Yopp K. R., “Toward an understanding of stochastic Hopf bifurcation: A base study”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 1947–1975 | DOI | MR

[19] Bashkirtseva I., Ryashko L., Schurz H., “Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances”, Chaos Solitons Fractals, 39 (2009), 7–16 | DOI | MR

[20] Bashkirtseva I. A., Perevalova T. V., Ryashko L. B., “Analiz indutsirovannykh shumom bifurkatsii v sisteme Khopfa”, PND, 18:1 (2010), 37–50 | Zbl

[21] Zakharova A., Vadivasova T., Anishenko V., Koseska A., Kurths J., “Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator”, Phys. Rev. E, 81:1 (2010), 011106, 6 pp. | DOI

[22] Franzoni L., Mannella R., McClintock P., Moss F., “Postponement of Hopf bifurcations by multiplicative colored noise”, Phys. Rev. A, 36:2 (1987), 834–841 | DOI

[23] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh, 2-e izd., URSS, M., 2009, 320 pp.