Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_3_a0, author = {Alexander O. Smirnov and Grigory M. Golovachev}, title = {Constructed in the elliptic functions three-phase solutions for the nonlinear {Schr\"odinger} equation}, journal = {Russian journal of nonlinear dynamics}, pages = {389--407}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a0/} }
TY - JOUR AU - Alexander O. Smirnov AU - Grigory M. Golovachev TI - Constructed in the elliptic functions three-phase solutions for the nonlinear Schr\"odinger equation JO - Russian journal of nonlinear dynamics PY - 2013 SP - 389 EP - 407 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a0/ LA - ru ID - ND_2013_9_3_a0 ER -
%0 Journal Article %A Alexander O. Smirnov %A Grigory M. Golovachev %T Constructed in the elliptic functions three-phase solutions for the nonlinear Schr\"odinger equation %J Russian journal of nonlinear dynamics %D 2013 %P 389-407 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a0/ %G ru %F ND_2013_9_3_a0
Alexander O. Smirnov; Grigory M. Golovachev. Constructed in the elliptic functions three-phase solutions for the nonlinear Schr\"odinger equation. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 389-407. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a0/
[1] Akhmediev N., Ankiewicz A., Taki M., “Waves that appear from nowhere and disappear without a trace”, Phys. Lett. A, 373 (2009), 675–678 | DOI | MR | Zbl
[2] Ruban V., Kodama Y., Ruderman M., Dudley J., Grimshaw R., McClintock P. V. E., Onorato M., Kharif C., Pelinovsky E., Soomere T. et al., Discussion debate: Rogue waves — towards a unifying concept?, Eur. Phys. J. Special Topics, 185:1 (2010), 5–15 | DOI
[3] Peregrine D. H., “Water waves, nonlinear Schrödinger equations and their solutions”, J. Aust. Math. Soc. Ser. B, 25 (1983), 16–43 | DOI | MR | Zbl
[4] Dyachenko A. I., Zakharov V. E., “On the formation of freak waves on the surface of deep water”, Pisma v ZhETF, 88:5 (2008), 356–359 | MR
[5] Zakharov V. E., Shamin R. V., “O veroyatnosti vozniknoveniya voln-ubiits”, Pisma v ZhETF, 91:2 (2010), 68–71
[6] Chabchoub A., Hoffmann N., Akhmediev N., “Rogue waves observation in a water wave tank”, Phys. Rev. Lett., 106:20 (2011), 204502, 4 pp. | DOI
[7] Chabchoub A., Hoffmann N., Onorato M., Akhmediev N., “Super rogue waves: Observation of a higher-order breather in water waves”, Phys. Rev. X, 2:1 (2012), 011015, 6 pp. | DOI
[8] Akhmediev N. N., Ankevich A., Solitony: nelineinye impulsy i puchki, Fizmatlit, M., 2003, 304 pp.
[9] Kibler B., Fatome J., Finot C., Millot G., Dias F., Genty G., Akhmediev N., Dudley J. M., “The Peregrine soliton in nonlinear fibre optics”, Nature Phys., 6:10 (2010), 790–795 | DOI
[10] Dubard P., Gaillard P., Klein C., Matveev V. B., “On multi-rogue waves solutions of the focusing NLS equation and positon solutions of the KdV equation”, Eur. Phys. J. Spec. Top., 185:1 (2010), 247–258 | DOI
[11] Dubard P., Matveev V. B., “Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation”, Nat. Hazards Earth Syst. Sci., 11 (2011), 667–672 | DOI | MR
[12] Ankiewicz A., Kedzora D. J., Akhmediev N., “Rogue waves triplets”, Phys. Lett. A, 375 (2011), 2782–2785 | DOI | Zbl
[13] Kedzora D. J., Ankiewicz A., Akhmediev N., “Circular rogue wave clusters”, Phys. Rev. E, 84:5 (2011), 056611, 7 pp. | DOI
[14] Ohta Y., Yang J., “General higer order rogue waves and their dynamics in the nonlinear Schrödinger equation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 1716–1740 | DOI | MR
[15] He J. S., Zhang H. R., Wang L. H., Porsezian K., Fokas A. S., “Generating mechanism for higher-order rogue waves”, Phys. Rev. E, 87:5 (2013), 052914, 10 pp. | DOI
[16] Guo B., Ling L., Liu Q. P., “Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions”, Phys. Rev. E, 85:2 (2012), 026607, 9 pp. | DOI
[17] Osborne A. R., Onorato M., Serio M., “The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains”, Phys. Lett. A, 275 (2000), 386–393 | DOI | MR | Zbl
[18] Calini A., Schober C. M., “Homoclinic chaos increases the likelihood of rogue wave formation”, Phys. Lett. A, 298 (2002), 335–349 | DOI | MR | Zbl
[19] Schober C. M., “Melnikov analysis and inverse spectral analysis of rogue waves in deep water”, Eur. J. Mech. B Fluids, 25:5 (2006), 602–620 | DOI | MR | Zbl
[20] Dysthe K. B., “Note on a modification to the nonlinear Schrödinger equation for application to deep water waves”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369 (1979), 105–114 | DOI | Zbl
[21] Trulsen K., Dysthe K. B., “A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water”, Wave Motion, 24:3 (1996), 281–289 | DOI | MR | Zbl
[22] Trulsen K., Kliakhandler I., Dysthe K. B., Velarde M. G., “On weakly nonlinear modulation of waves on deep water”, Phys. Fluids, 12:10 (2000), 2433–2437 | DOI | MR
[23] Saini A., Vyas V. M., Pandey S. N., Raju T. S., Panigrahi P. K., Traveling wave solutions to nonlinear Schroedinger equation with self-steepening and self-frequency shift, 2009, 8 pp., arXiv: 0911.2788
[24] Islas A. L., Schober C. M., “Predicting rogue waves in random oceanic sea states”, Phys. Fluids, 17:3 (2005), 031701, 4 pp. | DOI | MR | Zbl
[25] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Mateveev V. B., Algebro-geometrical approach to nonlinear evolution equations, Springer Ser. Nonlinear Dynamics, Springer, Berlin, 1994, 350 pp. | Zbl
[26] Gesztesy F., Holden H., Soliton equation and their algebro-geometric solutions, v. 1, Cambridge Stud. Adv. Math., 79, $(1+1)$-dimensional continuous models, Cambridge Univ. Press, Cambridge, 2003, 505 pp. | MR | Zbl
[27] Gesztesy F., Holden H., Michor J., Teschl G., Soliton equation and their algebro-geometric solutions, v. 2, Cambridge Stud. Adv. Math., 114, $(1+1)$-dimensional discrete models, Cambridge Univ. Press, Cambridge, 2008, 438 pp. | MR | Zbl
[28] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza, 1”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl
[29] Lax P. D., “Periodic solutions of the KdV equations”, Nonlinear wave motion, Proc. AMS–SIAM Summer Sem. (Clarkson Coll. Tech., Potsdam, N. Y., 1972), Lectures in Appl. Math., 15, Providence, R.I., 1974, 85–96 | MR
[30] Dubrovin B. A., Novikov S. P., “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, Dokl. AN SSSR, 219:3 (1974), 531–534 | MR | Zbl
[31] Its A. R., Matveev V. B., “Operatory Shredingera s konechnozonnym spektrom i $n$-solitonnye resheniya uravneniya Kortevega–de Friza”, TMF, 23:1 (1975), 51–68 | MR
[32] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl
[33] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl
[34] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl
[35] Matveev V. B., “30 years of finite-gap integration theory”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366:1867 (2008), 837–875 | DOI | MR | Zbl
[36] McLaughlin D. W., Schober C. M., “Chaotic and homoclinic behavior for numerical discretizations of the nonlinear Schrödinger equation”, Phys. D, 57:3–4 (1992), 447–465 | DOI | MR | Zbl
[37] Ablowitz M. J., Schober C. M., Herbst B. M., “Numerical chaos, roundoff errors, and homoclinic manifolds”, Phys. Rev. Lett., 71:17 (1993), 2683–2686 | DOI
[38] Calini A., Ercolani N. M., McLaughlin D. W., Schober C. M., “Mel'nikov analysis of numerically induced chaos in the nonlinear Schrödinger equation”, Phys. D, 89:3–4 (1996), 227–260 | DOI | MR | Zbl
[39] Smirnov A. O., “Ellipticheskii brizer nelineinogo uravneniya Shredingera”, Zap. nauchn. sem. POMI, 398, 2012, 209–222
[40] Ma Y. C., “The pertubed plane-wave solutons of the cubic Schrödinger equation”, Stud. Appl. Math., 60 (1979), 43–58 | MR
[41] Its A. R., “«Izomonodromnye» resheniya uravnenii nulevoi krivizny”, Izv. AN SSSR. Ser. Matem., 49:3 (1985), 530–565 | MR | Zbl
[42] Smirnov A. O., “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Matem. sb., 185:8 (1994), 103–114 | Zbl
[43] Kundu A., Mukherjee A., Naskar T., Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents, 2012, 5 pp., arXiv: 1204.0916
[44] Its A. R., “Obraschenie giperellipticheskikh integralov i integrirovanie nelineinykh differentsialnykh uravnenii”, Vestn. LGU, Ser. Matem., mekhan., astron., 7:2 (1976), 39–46 | MR | Zbl
[45] Dai C. Q., Zhang J. F., “New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients”, J. Phys. A, 39:4 (2006), 723–737 | DOI | MR | Zbl
[46] Ankiewicz A., Soto-Crespo J. M., Akhmediev N., “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR
[47] Li C. Z., He J. S., Darboux transformation and positions of the inhomogeneous Hirota and the Maxwell–Bloch equation, 2012, 5 pp., arXiv: 1210.2501
[48] Beiker G. F., Abelevy funktsii. Teorema Abelya i svyazannaya s nei teoriya teta-funktsii, MTsNMO, M., 2008, 736 pp.
[49] Fay J. D., Theta-functions on Riemann surfaces, Lect. Notes in Math., 352, Springer, 1973, 137 pp. | MR | Zbl
[50] Krazer A., Lehrbuch der Thetafunktionen, Teubner, Leipzig, 1903, 509 pp. | Zbl
[51] Smirnov A. O., “Ob odnom semeistve dvukhfaznykh reshenii uravneniya Bussineska, 1”, Nauchnaya sessiya GUAP, Sb. dokl. V 3 ch., v. 1, Tekhnicheskie nauki, GUAP, SPb., 2012, 219–223
[52] Smirnov A. O., “O prosteishem ratsionalnom reshenii uravneniya Bussineska”, Matematika i ee prilozheniya, Mezhvuz. sb. nauchn. tr., v. 4, GURMF, SPb., 2013, 58–64
[53] Lipovskii V. D., Matveev V. B., Smirnov A. O., “O svyazi mezhdu uravneniyami Kadomtseva–Petviashvili i Dzhonsona”, Zap. nauchn. sem. LOMI, 150, 1986, 70–75 | MR
[54] Klein K., Matveev V. B., Smirnov A. O., “Tsilindricheskoe uravnenie Kadomtseva–Petviashvili: starye i novye rezultaty”, TMF, 152:2 (2007), 304–320 | DOI | MR | Zbl
[55] Khusnutdinova K. R., Klein C., Matveev V. B., Smirnov A. O., “On the integrable elliptic cylindrical Kadomtsev–Petviashvili equation”, Chaos, 23 (2013), 013126, 13 pp. | DOI
[56] Smirnov A. O., “Reshenie nelineinogo uravneniya Shredingera v vide dvukhfaznykh strannykh voln”, TMF, 173:1 (2012), 89–103 | DOI
[57] Smirnov A. O., “Periodicheskie dvukhfaznye «volny-ubiitsy»”, Matem. zametki, 2013 (to appear)
[58] Smirnov A. O., “Matrichnyi analog teoremy Appelya i reduktsii mnogomernykh teta-funktsii Rimana”, Matem. sb., 175:7 (1987), 382–391 | MR | Zbl
[59] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, 2-e izd., Nauka, M., 1970, 312 pp. | MR | Zbl
[60] Amosenok E. G., Smirnov A. O., “Two-gap $2$-elliptic solution of Boussinesq equation”, Lett. Math. Phys., 96:1–3 (2011), 157–168 | DOI | MR | Zbl
[61] Smirnov A. O., Golovachev G. M., Amosenok E. G., “Dvukhzonnye $3$-ellipticheskie resheniya uravnenii Bussineska i Kortevega–de Friza”, Nelineinaya dinamika, 7:2 (2011), 239–256
[62] Smirnov A. O., “Konechnozonnye resheniya abelevoi tsepochki Tody roda $4$ i $5$ v ellipticheskikh funktsiyakh”, TMF, 78:1 (1989), 11–21 | MR